Do you want to publish a course? Click here

The Bright and Dark Sides of High-Redshift starburst galaxies from {it Herschel} and {it Subaru} observations

66   0   0.0 ( 0 )
 Added by Annagrazia Puglisi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present rest-frame optical spectra from the FMOS-COSMOS survey of twelve $z sim 1.6$ textit{Herschel} starburst galaxies, with Star Formation Rate (SFR) elevated by $times$8, on average, above the star-forming Main Sequence (MS). Comparing the H$alpha$ to IR luminosity ratio and the Balmer Decrement we find that the optically-thin regions of the sources contain on average only $sim 10$ percent of the total SFR whereas $sim90$ percent comes from an extremely obscured component which is revealed only by far-IR observations and is optically-thick even in H$alpha$. We measure the [NII]$_{6583}$/H$alpha$ ratio, suggesting that the less obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity-SFR anticorrelation observed at fixed stellar mass for the MS population. The [SII]$_{6732}$/[SII]$_{6717}$ ratio from the average spectrum indicates an electron density $n_{rm e} sim 1,100 mathrm{cm}^{-3}$, larger than what estimated for MS galaxies but only at the 1.5$sigma$ level. Our results provide supporting evidence that high-$z$ MS outliers are the analogous of local ULIRGs, and are consistent with a major merger origin for the starburst event.



rate research

Read More

114 - R. Neri , P. Cox , A. Omont 2019
Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we conducted a program to measure redshifts for 13 bright galaxies detected in the Herschel Astrophysical Large Area Survey (H-ATLAS) with $S_{500{mu}rm m}ge$80 mJy. We report reliable spectroscopic redshifts for 12 individual sources, which are derived from scans of the 3 and 2 mm bands, covering up to 31 GHz in each band, and are based on the detection of at least two emission lines. The spectroscopic redshifts are in the range $2.08<z<4.05$ with a median value of $z=2.9pm$0.6. The sources are unresolved or barely resolved on scales of 10 kpc. In one field, two galaxies with different redshifts were detected. In two cases the sources are found to be binary galaxies with projected distances of ~140 kpc. The linewidths of the sources are large, with a mean value for the full width at half maximum of 700$pm$300 km/s and a median of 800 km/s. We analyse the nature of the sources with currently available ancillary data to determine if they are lensed or hyper-luminous $L_{rm FIR} > 10^{13},L_odot$ galaxies. We also present a reanalysis of the spectral energy distributions including the continuum flux densities measured at 3 and 2 mm to derive the overall properties of the sources. Future prospects based on these efficient measurements of redshifts of high-z galaxies using NOEMA are outlined, including a comprehensive survey of all the brightest Herschel galaxies.
The aim of our analysis is twofold. On the one hand we are interested in addressing whether a sample of ETGs morphologically selected differs from a sample of passive galaxies in terms of galaxy statistics. On the other hand we study how the relative abundance of galaxies, the number density and the stellar mass density for different morphological types change over the redshift range 0.6<z<2.5. From the 1302 galaxies brighter than Ks=22 selected from the GOODS-MUSIC catalogue, we classified the ETGs on the basis of their morphology and the passive galaxies on the basis of their sSFR. We proved how the definition of passive galaxy depends on the IMF adopted in the models and on the assumed sSFR threshold. We find that ETGs cannot be distinguished from the other morphological classes on the basis of their low sSFR, irrespective of the IMF adopted in the models. Using the sample of 1302 galaxies morphologically classified into spheroidal galaxies (ETGs) and not spheroidal galaxies (LTGs), we find that their fractions are constant over the redshift range 0.6<z<2.5 (20-30% ETGs vs 70-80% LTGs). However, at z<1 these fractions change among the population of the most massive (M*>=10^(11) M_sol) galaxies, with the fraction of massive ETGs rising up to 40% and the fraction of massive LTGs decreasing down to 60%. Moreover, we find that the number density and the stellar mass density of the whole population of massive galaxies increase almost by a factor of ~10 between 0.6<z<2.5, with a faster increase of these densities for the ETGs than for the LTGs. Finally, we find that the number density of the highest-mass galaxies (M*>3-4x10^(11) M_sol) both ETGs and LTGs do not increase since z~2.5, contrary to the lower mass galaxies. This suggests that the population of the most massive galaxies formed at z>2.5-3 and that the assembly of such high-mass galaxies is not effective at lower redshift.
We present Herschel-PACS observations of rest-frame mid-infrared and far-infrared spectral line emissions from two lensed, ultra-luminous infrared galaxies at high redshift: MIPS J142824.0+352619 (MIPS J1428), a starburst-dominated system at z = 1.3, and IRAS F10214+4724 (F10214), a source at z = 2.3 hosting both star-formation and a luminous AGN. We have detected [OI]63 micron and [OIII]52 micron in MIPS J1428, and tentatively [OIII]52 micron in F10214. Together with the recent ZEUS-CSO [CII]158 micron detection in MIPS J1428 we can for the first time combine [OI], [CII] and far-IR (FIR) continuum measurements for photo-dissociation (PDR) modeling of an ultra-luminous (L_IR > 10^12 L_sun) star forming galaxy at the peak epoch of cosmic star formation. We find that MIPS J1428, contrary to average local ULIRGs, does not show a deficit in [OI] relative to FIR. The combination of far-UV flux G_0 and gas density n (derived from the PDR models), as well as the star formation efficiency (derived from CO and FIR) is similar to normal or starburst galaxies, despite the high infrared luminosity of this system. In contrast, F10214 has stringent upper limits on [OIV] and [SIII], and an [OIII]/FIR ratio at least an order of magnitude lower than local starbursts or AGN, similar to local ULIRGs.
We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts ($3 < z < 5$) in the Subaru/{it XMM-Newton} Deep Survey (SXDS) field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at $z > 3$ with intrinsic (de-absorbed and rest-frame 2--10 keV) luminosities of $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ detected in the 0.5--2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the $1/V_{rm max}$ method, we confirm that the comoving space density of luminous AGNs decreases with redshift above $z > 3$. When combined with the {it Chandra}-COSMOS result of Civano et al. (2011), the density decline of AGNs with $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ is well represented by a power law of $(1 + z)^{-6.2 pm 0.9}$. We also determine the fraction of X-ray obscured AGNs with $N_{rm H} > 10^{22}$ cm$^{-2}$ in the Compton-thin population to be 0.54$^{+0.17}_{-0.19}$, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59$pm$0.09. Comparing our result with that obtained in the local Universe, we conclude that the obscured fraction of luminous AGNs increases significantly from $z=0$ to $z>3$ by a factor of 2.5$pm$1.1.
Aims: To explore the infrared and radio properties of one of the closest Galactic starburst regions. Methods: Images obtained with the Herschel Space Observatory at wavelengths of 70, 160, 250, 350, and 500 microns using the PACS and SPIRE arrays are analyzed and compared with radio continuum VLA data and 8 micron images from the Spitzer Space Telescope. The morphology of the far-infrared emission is combined with radial velocity measurements of millimeter and centimeter wavelength transitions to identify features likely to be associated with the W43 complex. Results: The W43 star-forming complex is resolved into a dense cluster of protostars, infrared dark clouds, and ridges of warm dust heated by massive stars. The 4 brightest compact sources with L > 1.5 x 10^4 Lsun embedded within the Z-shaped ridge of bright dust emission in W43 remain single at 4 (0.1 pc) resolution. These objects, likely to be massive protostars or compact clusters in early stages of evolution are embedded in clumps with masses of 10^3 to 10^4 Msun, but contribute only 2% to the 3.6 x 10^6 Lsun far-IR luminosity of W43 measured in a 16 by 16 pc box. The total mass of gas derived from the far-IR dust emission inside this region is ~10^6 Msun. Cometary dust clouds, compact 6 cm radio sources, and warm dust mark the locations of older populations of massive stars. Energy release has created a cavity blowing-out below the Galactic plane. Compression of molecular gas in the plane by the older HII region near G30.684-0.260 and the bipolar structure of the resulting younger W43 HII region may have triggered the current mini-star burst.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا