Do you want to publish a course? Click here

The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies

140   0   0.0 ( 0 )
 Added by Sonia Tamburri
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of our analysis is twofold. On the one hand we are interested in addressing whether a sample of ETGs morphologically selected differs from a sample of passive galaxies in terms of galaxy statistics. On the other hand we study how the relative abundance of galaxies, the number density and the stellar mass density for different morphological types change over the redshift range 0.6<z<2.5. From the 1302 galaxies brighter than Ks=22 selected from the GOODS-MUSIC catalogue, we classified the ETGs on the basis of their morphology and the passive galaxies on the basis of their sSFR. We proved how the definition of passive galaxy depends on the IMF adopted in the models and on the assumed sSFR threshold. We find that ETGs cannot be distinguished from the other morphological classes on the basis of their low sSFR, irrespective of the IMF adopted in the models. Using the sample of 1302 galaxies morphologically classified into spheroidal galaxies (ETGs) and not spheroidal galaxies (LTGs), we find that their fractions are constant over the redshift range 0.6<z<2.5 (20-30% ETGs vs 70-80% LTGs). However, at z<1 these fractions change among the population of the most massive (M*>=10^(11) M_sol) galaxies, with the fraction of massive ETGs rising up to 40% and the fraction of massive LTGs decreasing down to 60%. Moreover, we find that the number density and the stellar mass density of the whole population of massive galaxies increase almost by a factor of ~10 between 0.6<z<2.5, with a faster increase of these densities for the ETGs than for the LTGs. Finally, we find that the number density of the highest-mass galaxies (M*>3-4x10^(11) M_sol) both ETGs and LTGs do not increase since z~2.5, contrary to the lower mass galaxies. This suggests that the population of the most massive galaxies formed at z>2.5-3 and that the assembly of such high-mass galaxies is not effective at lower redshift.



rate research

Read More

Several dedicated surveys focusing on early-type galaxies (ETGs) reveal that significant fractions of them are detectable in all interstellar medium phases studied to date. We select ETGs from the Herschel Reference Survey that have both far-infrared Herschel and either HI or CO detection (or both). We derive their star formation rates (SFR), stellar masses and dust masses via modelling their spectral energy distributions. We combine these with literature information on their atomic and molecular gas properties, in order to relate their star formation, total gas mass and dust mass on global scales. The ETGs deviate from the dust mass-SFR relation and the Schmidt-Kennicutt relation that SDSS star forming galaxies define: compared to SDSS galaxies, ETGs have more dust at the same SFR, or less SFR at the same dust mass. When placing them in the M*-SFR plane, ETGs show a much lower specific SFR as compared to normal star-forming galaxies. ETGs show a large scatter compared to the Schmidt-Kennicutt relation found locally within our Galaxy, extending to lower SFRs and gas mass surface densities. Using an ETGs SFR and the Schmidt-Kennicutt law to predict its gas mass leads to an underestimate. ETGs have similar observed-gas-to-modelled-dust mass ratios to star forming-galaxies of the same stellar mass, as well as they exhibit a similar scatter.
We analyse structural decompositions of 500 late-type galaxies (Hubble $T$-type $ge 6$) from the Spitzer Survey of Stellar Structure in Galaxies (S$^4$G), spanning a stellar mass range of about $10^7$ to a few times $10^{10}$ M$_odot$. Their decomposition parameters are compared with those of the early-type dwarfs in the Virgo cluster from Janz et al. They have morphological similarities, including the fact that the fraction of simple one-component galaxies in both samples increases towards lower galaxy masses. We find that in the late-type two-component galaxies both the inner and outer structures are by a factor of two larger than those in the early-type dwarfs, for the same stellar mass of the component. While dividing the late-type galaxies to low and high density environmental bins, it is noticeable that both the inner and outer components of late types in the high local galaxy density bin are smaller, and lie closer in size to those of the early-type dwarfs. This suggests that, although structural differences between the late and early-type dwarfs are observed, environmental processes can plausibly transform their sizes sufficiently, thus linking them evolutionarily.
Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed, using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way-like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15-65 kpc/h at the relative velocities of 1500-1600 km/s. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy-cluster interactions, we claim that the role of the galaxy-galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy-cluster interactions, depending on the dynamical history.
There is a longstanding discrepancy between the observed Galactic classical nova rate of $sim 10$ yr$^{-1}$ and the predicted rate from Galactic models of $sim 30$--50 yr$^{-1}$. One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half ($sim 48$%) of novae are expected to be easily detectable ($g lesssim 15$) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from ASAS-SN, OGLE-IV, and the Palomar Gattini IR-survey in the context of our modeling, we find a tentative Galactic nova rate of $sim 40$ yr$^{-1}$, though this could decrease to as low as $sim 30$ yr$^{-1}$ depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from $-0.05pm0.11~log$ Gyr/R$_e$ for the lowest mass galaxies to $-0.82pm0.08~log$ Gyr/R$_e$ for the highest mass ones. This strong gradient-mass relation has a slope of $-0.70pm0.18$. Comparing local age and metallicity gradients with the velocity dispersion $sigma$ within galaxies against the global relation with $sigma$ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local $sigma$ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local $sigma$ reaching $6.50pm0.78$ dex/$log$ km/s for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity dependent supernova yields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا