Do you want to publish a course? Click here

The refined impedance transform for 1D acoustic reflection data

49   0   0.0 ( 0 )
 Added by Peter Gibson
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The one dimensional wave equation serves as a basic model for imaging modalities such as seismic which utilize acoustic data reflected back from a layered medium. In 1955 Peterson et al. described a single scattering approximation for the one dimensional wave equation that relates the reflection Greens function to acoustic impedance. The approximation is simple, fast to compute and has become a standard part of seismic theory. The present paper re-examines this classical approximation in light of new results concerning the (exact) measurement operator for reflection imaging of layered media, and shows that the classical approximation can be substantially improved. We derive an alternate formula, called the refined impedance transform, that retains the simplicity and speed of computation of the classical estimate, but which is qualitatively more accurate and applicable to a wider range of recorded data. The refined impedance transform can be applied to recorded data directly (without the need to deconvolve the source wavelet), and solves exactly the inverse problem of determining the value of acoustic impedance on the far side of an arbitrary slab of unknown structure. The results are illustrated with numerical examples.



rate research

Read More

The one-dimensional viscous conservation law is considered on the whole line $$ u_t + f(u)_x=eps u_{xx},quad (x,t)inRRtimesoverline{RP},quad eps>0, $$ subject to positive measure initial data. The flux $fin C^1(RR)$ is assumed to satisfy a $p-$condition, a weak form of convexity. Existence and uniqueness of solutions is established. The method of proof relies on sharp decay estimates for viscous Hamilton-Jacobi equations.
Let $H$ denote the harmonic oscillator Hamiltonian on $mathbb{R}^d,$ perturbed by an isotropic pseudodifferential operator of order $1.$ We consider the Schrodinger propagator $U(t)=e^{-itH},$ and find that while $operatorname{singsupp} operatorname{Tr} U(t) subset 2 pi mathbb{Z}$ as in the unperturbed case, there exists a large class of perturbations in dimension $d geq 2$ for which the singularities of $operatorname{Tr} U(t)$ at nonzero multiples of $2 pi$ are weaker than the singularity at $t=0$. The remainder term in the Weyl law is of order $o(lambda^{d-1})$, improving in these cases the $O(lambda^{d-1})$ remainder previously established by Helffer--Robert.
The transform considered in the paper averages a function supported in a ball in $RR^n$ over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, error correction, and other issues. Four different types of complete range descriptions are provided, some of which also suggest inversion procedures. Necessity of three of these (appropriately formulated) conditions holds also in general domains, while the complete discussion of the case of general domains would require another publication.
In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrodinger equations (NLS) that we gave in cite{CM15APDE}. We consider a NLS with a Schrodinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the refined profile, a quasi--periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in cite{CM15APDE}, giving us also a better understanding of the Fermi Golden Rule.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا