Do you want to publish a course? Click here

Range descriptions for the spherical mean Radon transform

106   0   0.0 ( 0 )
 Added by Peter Kuchment
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transform considered in the paper averages a function supported in a ball in $RR^n$ over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, error correction, and other issues. Four different types of complete range descriptions are provided, some of which also suggest inversion procedures. Necessity of three of these (appropriately formulated) conditions holds also in general domains, while the complete discussion of the case of general domains would require another publication.



rate research

Read More

In this article, we consider the limited data problem for spherical mean transform. We characterize the generation and strength of the artifacts in a reconstruction formula. In contrast to the thirds author work [Ngu15b], the observation surface considered in this article is not flat. Our results are comparable to those obtained in [Ngu15b] for flat observation surface. For the two dimensional problem, we show that the artifacts are $k$ orders smoother than the original singularities, where $k$ is vanishing order of the smoothing function. Moreover, if the original singularity is conormal, then the artifacts are $k+frac{1}{2}$ order smoother than the original singularity. We provide some numerical examples and discuss how the smoothing effects the artifacts visually. For three dimensional case, although the result is similar to that [Ngu15b], the proof is significantly different. We introduce a new idea of lifting the space.
48 - Peter C. Gibson 2017
The one dimensional wave equation serves as a basic model for imaging modalities such as seismic which utilize acoustic data reflected back from a layered medium. In 1955 Peterson et al. described a single scattering approximation for the one dimensional wave equation that relates the reflection Greens function to acoustic impedance. The approximation is simple, fast to compute and has become a standard part of seismic theory. The present paper re-examines this classical approximation in light of new results concerning the (exact) measurement operator for reflection imaging of layered media, and shows that the classical approximation can be substantially improved. We derive an alternate formula, called the refined impedance transform, that retains the simplicity and speed of computation of the classical estimate, but which is qualitatively more accurate and applicable to a wider range of recorded data. The refined impedance transform can be applied to recorded data directly (without the need to deconvolve the source wavelet), and solves exactly the inverse problem of determining the value of acoustic impedance on the far side of an arbitrary slab of unknown structure. The results are illustrated with numerical examples.
In this article, we prove a stability estimate going from the Radon transform of a function with limited angle-distance data to the $L^p$ norm of the function itself, under some conditions on the support of the function. We apply this theorem to obtain stability estimates for an inverse boundary value problem with partial data.
In the paper we prove the existence results for initial-value boundary value problems for compressible isothermal Navier-Stokes equations. We restrict ourselves to 2D case of a problem with no-slip condition for nonstationary motion of viscous compressible isothermal fluid. However, the technique of modeling and analysis presented here is general and can be used for 3D problems.
We consider the generalized Radon transform (defined in terms of smooth weight functions) on hyperplanes in $mathbb{R}^n$. We analyze general filtered backprojection type reconstruction methods for limited data with filters given by general pseudodifferential operators. We provide microlocal characterizations of visible and added singularities in $mathbb{R}^n$ and define modifi
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا