Do you want to publish a course? Click here

5G Wireless and Wired Convergence in a Passive Optical Network using UF-OFDM and GFDM

64   0   0.0 ( 0 )
 Added by Arman Farhang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The provision of both wireless and wired services in the optical access domain will be an important function for future passive optical networks (PON). With the emergence of 5th generation (5G) mobile communications, a move toward a dense deployment of small cell antenna sites, in conjunction with a cloud radio access network (C-RAN) architecture, is foreseen. This type of network architecture greatly increases the requirement for high capacity mobile fronthaul and backhaul links. An efficient way of achieving such connectivity is to make use of wavelength division multiplexed (WDM) PON infrastructure where wireless and wired services may be converged for distribution. In this work, for the first time, the convergence of 5G wireless candidate waveforms with a single-carrier wired signal is demonstrated in a PON. Three bands of universally filtered orthogonal frequency division multiplexing (UF-OFDM) and generalized frequency division multiplexing (GFDM), are transmitted at an intermediate frequency in conjunction with a digital 10Gb/s pulse amplitude modulation (PAM) signal in the downlink direction. Orthogonal frequency division multiplexing (OFDM) is also evaluated as a benchmark. Results show, for each waveform, how performance varies due to the 5G channel spacing - indicating UF-OFDMs superiority in terms of PON convergence. Successful transmission over 25km of fibre is also demonstrated for all waveforms.



rate research

Read More

Visible light communications (VLC) have recently attracted a growing interest and can be a potential solution to realize indoor wireless communication with high bandwidth capacity for RF-restricted environments such as airplanes and hospitals. Optical based orthogonal frequency division multiplexing (OFDM) systems have been proposed in the literature to combat multipath distortion and intersymbol interference (ISI) caused by multipath signal propagation. In this paper, we present a robust timing synchronization scheme suitable for asymmetrically clipped (AC) OFDM based optical intensity modulated direct detection (IM/DD) wireless systems. Our proposed method works perfectly for ACO-OFDM, Pulse amplitude modulated discrete multitone (PAM-DMT) and discrete Hartley transform (DHT) based optical OFDM systems. In contrast to existing OFDM timing synchronization methods which are either not suitable for AC OFDM techniques due to unipolar nature of output signal or perform poorly, our proposed method is suitable for AC OFDM schemes and outperforms all other available techniques. Both numerical and experimental results confirm the accuracy of the proposed method. Our technique is also computationally efficient as it requires very few computations as compared to conventional methods in order to achieve good accuracy.
Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.
Wireless energy harvesting is regarded as a promising energy supply alternative for energy-constrained wireless networks. In this paper, a new wireless energy harvesting protocol is proposed for an underlay cognitive relay network with multiple primary user (PU) transceivers. In this protocol, the secondary nodes can harvest energy from the primary network (PN) while sharing the licensed spectrum of the PN. In order to assess the impact of different system parameters on the proposed network, we first derive an exact expression for the outage probability for the secondary network (SN) subject to three important power constraints: 1) the maximum transmit power at the secondary source (SS) and at the secondary relay (SR), 2) the peak interference power permitted at each PU receiver, and 3) the interference power from each PU transmitter to the SR and to the secondary destination (SD). To obtain practical design insights into the impact of different parameters on successful data transmission of the SN, we derive throughput expressions for both the delay-sensitive and the delay-tolerant transmission modes. We also derive asymptotic closed-form expressions for the outage probability and the delay-sensitive throughput and an asymptotic analytical expression for the delay-tolerant throughput as the number of PU transceivers goes to infinity. The results show that the outage probability improves when PU transmitters are located near SS and sufficiently far from SR and SD. Our results also show that when the number of PU transmitters is large, the detrimental effect of interference from PU transmitters outweighs the benefits of energy harvested from the PU transmitters.
In typical wireless cellular systems, the handover mechanism involves reassigning an ongoing session handled by one cell into another. In order to support increased capacity requirement and to enable newer use cases, the next generation wireless systems will have a very dense deployment with advanced beam-forming capability. In such systems, providing a better mobility along with enhanced throughput performance requires an improved handover strategy. In this paper, we will detail a novel method for handover optimization in a 5G cellular network using reinforcement learning (RL). In contrast to the conventional method, we propose to control the handovers between base-stations (BSs) using a centralized RL agent. This agent handles the radio measurement reports from the UEs and choose appropriate handover actions in accordance with the RL framework to maximize a long-term utility. We show that the handover mechanism can be posed as a contextual multi-armed bandit problem and solve it using Q-learning method. We analyze the performance of the methods using different propagation and deployment environment and compare the results with the state-of-the-art algorithms. Results indicate a link-beam performance gain of about 0.3 to 0.7 dB for practical propagation environments.
Visible Light Communication (VLC) using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, a novel OFDM VLC system is proposed which can be utilized for both communications and indoor positioning. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those using single carrier modulation scheme, i.e., on-off keying (OOK) modulation. We demonstrate that OFDM positioning system outperforms its conventional counterpart. Finally, we investigate the impact of different system parameters on the positioning accuracy of the proposed OFDM VLC system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا