Do you want to publish a course? Click here

Robust Timing Synchronization for AC-OFDM Based Optical Wireless Communications

158   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Visible light communications (VLC) have recently attracted a growing interest and can be a potential solution to realize indoor wireless communication with high bandwidth capacity for RF-restricted environments such as airplanes and hospitals. Optical based orthogonal frequency division multiplexing (OFDM) systems have been proposed in the literature to combat multipath distortion and intersymbol interference (ISI) caused by multipath signal propagation. In this paper, we present a robust timing synchronization scheme suitable for asymmetrically clipped (AC) OFDM based optical intensity modulated direct detection (IM/DD) wireless systems. Our proposed method works perfectly for ACO-OFDM, Pulse amplitude modulated discrete multitone (PAM-DMT) and discrete Hartley transform (DHT) based optical OFDM systems. In contrast to existing OFDM timing synchronization methods which are either not suitable for AC OFDM techniques due to unipolar nature of output signal or perform poorly, our proposed method is suitable for AC OFDM schemes and outperforms all other available techniques. Both numerical and experimental results confirm the accuracy of the proposed method. Our technique is also computationally efficient as it requires very few computations as compared to conventional methods in order to achieve good accuracy.



rate research

Read More

Visible Light Communication (VLC) using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, a novel OFDM VLC system is proposed which can be utilized for both communications and indoor positioning. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those using single carrier modulation scheme, i.e., on-off keying (OOK) modulation. We demonstrate that OFDM positioning system outperforms its conventional counterpart. Finally, we investigate the impact of different system parameters on the positioning accuracy of the proposed OFDM VLC system.
Light amplification by stimulated emission of radiation (laser) sources have many advantages for use in high data rate optical wireless communications. In particular, the low cost and high-bandwidth properties of laser sources such as vertical-cavity surface-emitting lasers (VCSELs) make them attractive for future indoor optical wireless communications. In order to be integrated into future indoor networks, such lasers should conform to eye safety regulations determined by the international electrotechnical commission (IEC) standards for laser safety. In this paper, we provide a detailed study of beam propagation to evaluate the received power of various laser sources, based on which as well as the maximum permissible exposure (MPE) defined by the IEC 60825-1:2014 standard, we establish a comprehensive framework for eye safety analyses. This framework allows us to calculate the maximum allowable transmit power, which is crucial in the design of a reliable and safe laser-based wireless communication system. Initially, we consider a single-mode Gaussian beam and calculate the maximum permissible transmit power. Subsequently, we generalize this approach for higher-mode beams. It is shown that the M-squared-based approach for analysis of multimode lasers ensures the IEC eye safety limits, however, in some scenarios, it can be too conservative compared to the precise beam decomposition method. Laser safety analyses with consideration of optical elements such as lens and diffuser, as well as for VCSEL array have been also presented. Skin safety, as another significant factor of laser safety, has also been investigated in this paper. We have studied the impacts of various parameters such as wavelength, exposure duration and the divergence angle of laser sources on the safety analysis by presenting insightful results.
Differential orthogonal frequency division multiplexing (OFDM) is practically attractive for underwater acoustic communications since it has the potential to obviate channel estimation. However, similar to coherent OFDM, it may suffer from severe inter-carrier interference over time-varying channels. To alleviate the induced performance degradation, we adopt the newly-emerging partial FFT demodulation technique in this paper and propose an eigendecomposition-based algorithm to compute the combining weights. Compared to existing adaptive methods, the new algorithm can avoid error propagation and eliminate the need for parameter tuning. Moreover, it guarantees global optimality under the narrowband Doppler assumption, with the optimal weight vector of partial FFT demodulation achieved by the eigenvector associated with the smallest eigenvalue of the pilot detection error matrix. Finally, the algorithm can also be extended straightforwardly to perform subband-wise computation to counteract wideband Doppler effects.
Integrated satellite-terrestrial communications networks aim to exploit both the satellite and the ground mobile communications, thus providing genuine ubiquitous coverage. For 5G integrated low earth orbit (LEO) satellite communication systems, the timing advance (TA) is required to be estimated in the initial random access procedure in order to facilitate the uplink frame alignment among different users. However, due to the inherent characteristics of LEO satellite communication systems, e.g., wide beam coverage and long propagation delays, the existing 5G terrestrial uplink TA scheme is not applicable in the satellite networks. In this paper, we investigate location-based TA estimation for 5G integrated LEO satellite communication systems. We obtain the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements in the downlink timing and frequency synchronization phase, which are made from the satellite at different time instants. We propose to take these measurements for either UE geolocation or ephemeris estimation, thus calculating the TA value. The estimation is then formulated as a quadratic optimization problem whose globally optimal solution can be obtained by a quadratic penalty algorithm. To reduce the computational complexity, we further propose an alternative approximation method based on iteratively performing a linearization procedure on the quadratic equality constraints. Numerical results show that the proposed methods can approach the constrained Cramer-Rao lower bound (CRLB) of the TA estimation and thus assure uplink frame alignment for different users.
The Reconfigurable Intelligent Surface (RIS) constitutes one of the prominent technologies for the next 6-th Generation (6G) of wireless communications. It is envisioned to enhance signal coverage in cases where obstacles block the direct communication from Base Stations (BSs), and when high carrier frequencies are used that are sensitive to attenuation losses. In the literature, the exploitation of RISs is exclusively based on traditional coherent demodulation, which necessitates the availability of Channel State Information (CSI). Given the CSI, a multi-antenna BS or a dedicated controller computes the pre/post spatial coders and the RIS configuration. The latter tasks require significant amount of time and resources, which may not be affordable when the channel is time-varying or the CSI is not accurate enough. In this paper, we consider the uplink between a single-antenna user and a multi-antenna BS and present a novel RIS-empowered Orthogonal Frequency Division Multiplexing (OFDM) communication system based on the differential phase shift keying, which is suitable for high noise and/or mobility scenarios. Considering both an idealistic and a realistic channel model, analytical expressions for the Signal-to-Interference and Noise Ratio (SINR) and the Symbol Error Probability (SEP) of the proposed non-coherent RIS-empowered system are presented. Our extensive computer simulation results verify the accuracy of the presented analysis and showcase the proposed systems performance and superiority over coherent demodulation in different mobility and spatial correlation scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا