Do you want to publish a course? Click here

A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

139   0   0.0 ( 0 )
 Added by Yongpeng Wu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.

rate research

Read More

After about a decade of intense research, spurred by both economic and operational considerations, and by environmental concerns, energy efficiency has now become a key pillar in the design of communication networks. With the advent of the fifth generation of wireless networks, with millions more base stations and billions of connected devices, the need for energy-efficient system design and operation will be even more compelling. This survey provides an overview of energy-efficient wireless communications, reviews seminal and recent contribution to the state-of-the-art, including the papers published in this special issue, and discusses the most relevant research challenges to be addressed in the future.
88 - Weidong Mei , Zhi Chen , Jun Fang 2017
High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.
This paper develops a tractable framework for exploiting the potential benefits of physical layer security in three-tier wireless sensor networks using stochastic geometry. In such networks, the sensing data from the remote sensors are collected by sinks with the help of access points, and the external eavesdroppers intercept the data transmissions.We focus on the secure transmission in two scenarios: i) the active sensors transmit their sensing data to the access points, and ii) the active access points forward the data to the sinks. We derive new compact expressions for the average secrecy rate in these two scenarios. We also derive a new compact expression for the overall average secrecy rate. Numerical results corroborate our analysis and show that multiple antennas at the access points can enhance the security of three-tier wireless sensor networks. Our results show that increasing the number of access points decreases the average secrecy rate between the access point and its associated sink. However, we find that increasing the number of access points first increases the overall average secrecy rate, with a critical value beyond which the overall average secrecy rate then decreases. When increasing the number of active sensors, both the average secrecy rate between the sensor and its associated access point and the overall average secrecy rate decrease. In contrast, increasing the number of sinks improves both the average secrecy rate between the access point and its associated sink, as well as the overall average secrecy rate.
116 - Wanli Wen , Chenxi Liu , Yaru Fu 2020
In this paper, we propose a novel secure random caching scheme for large-scale multi-antenna heterogeneous wireless networks, where the base stations (BSs) deliver randomly cached confidential contents to the legitimate users in the presence of passive eavesdroppers as well as active jammers. In order to safeguard the content delivery, we consider that the BSs transmits the artificial noise together with the useful signals. By using tools from stochastic geometry, we first analyze the average reliable transmission probability (RTP) and the average confidential transmission probability (CTP), which take both the impact of the eavesdroppers and the impact of the jammers into consideration. We further provide tight upper and lower bounds on the average RTP. These analytical results enable us to obtain rich insights into the behaviors of the average RTP and the average CTP with respect to key system parameters. Moreover, we optimize the caching distribution of the files to maximize the average RTP of the system, while satisfying the constraints on the caching size and the average CTP. Through numerical results, we show that our proposed secure random caching scheme can effectively boost the secrecy performance of the system compared to the existing solutions.
This paper considers a scenario in which a source-destination pair needs to establish a confidential connection against an external eavesdropper, aided by the interference generated by another source-destination pair that exchanges public messages. The goal is to compute the maximum achievable secrecy degrees of freedom (S.D.o.F) region of a MIMO two-user wiretap network. First, a cooperative secrecy transmission scheme is proposed, whose feasible set is shown to achieve all S.D.o.F. pairs on the S.D.o.F. region boundary. In this way, the determination of the S.D.o.F. region is reduced to a problem of maximizing the S.D.o.F. pair over the proposed transmission scheme. The maximum achievable S.D.o.F. region boundary points are obtained in closed form, and the construction of the precoding matrices achieving the maximum S.D.o.F. region boundary is provided. The obtained analytical expressions clearly show the relation between the maximum achievable S.D.o.F. region and the number of antennas at each terminal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا