Do you want to publish a course? Click here

Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap

212   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and DMRG calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.



rate research

Read More

We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous Hamiltonian and a discrete lattice Hamiltonian is derived. As an example, we show that this mapping does not depend neither on the state of the system nor on the number of particles. Energies, density profiles and correlation functions are obtained both numerically (DMRG and Exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction parameter of a discrete lattice Hamiltonian above which DMRG gives unrealistic results.
We consider multi-component quantum mixtures (bosonic, fermionic, or mixed) with strongly repulsive contact interactions in a one-dimensional harmonic trap. In the limit of infinitely strong repulsion and zero temperature, using the class-sum method, we study the symmetries of the spatial wave function of the mixture. We find that the ground state of the system has the most symmetric spatial wave function allowed by the type of mixture. This provides an example of the generalized Lieb-Mattis theorem. Furthermore, we show that the symmetry properties of the mixture are embedded in the large-momentum tails of the momentum distribution, which we evaluate both at infinite repulsion by an exact solution and at finite interactions using a numerical DMRG approach. This implies that an experimental measurement of the Tans contact would allow to unambiguously determine the symmetry of any kind of multi-component mixture.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
The degenerate Bose-Fermi (BF) mixtures in one dimension present a novel realization of two decoupled Luttinger liquids with bosonic and fermionic degrees of freedom at low temperatures. However, the transport properties of such decoupled Luttinger liquids of charges have not yet been studied. Here we apply generalized hydrodynamics to study the transport properties of one-dimensional (1D) BF mixtures with delta-function interactions. The initial state is set up as the semi-infinite halves of two 1D BF mixtures with different temperatures, joined together at the time $t=0$ and the junction point $x=0$. Using the Bethe ansatz solution, we first rigorously prove the existence of conserved charges for both the bosonic and fermionic degrees of freedom, preserving the Euler-type continuity equations. We then analytically obtain the distributions of the densities and currents of the local conserved quantities which solely depend on the ratio $xi=x/t$. The left and right moving quasiparticle excitations of the two halves form multiple segmented light-cone hydrodynamics that display ballistic transport of the conserved charge densities and currents in different degrees of freedom. Our analytical results provide a deep understanding of the quantum transport of multi-component Luttinger liquids in quantum systems with both bosonic and fermionic statistics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا