Do you want to publish a course? Click here

Strongly correlated one-dimensional Bose-Fermi quantum mixtures: symmetry and correlations

502   0   0.0 ( 0 )
 Added by Patrizia Vignolo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider multi-component quantum mixtures (bosonic, fermionic, or mixed) with strongly repulsive contact interactions in a one-dimensional harmonic trap. In the limit of infinitely strong repulsion and zero temperature, using the class-sum method, we study the symmetries of the spatial wave function of the mixture. We find that the ground state of the system has the most symmetric spatial wave function allowed by the type of mixture. This provides an example of the generalized Lieb-Mattis theorem. Furthermore, we show that the symmetry properties of the mixture are embedded in the large-momentum tails of the momentum distribution, which we evaluate both at infinite repulsion by an exact solution and at finite interactions using a numerical DMRG approach. This implies that an experimental measurement of the Tans contact would allow to unambiguously determine the symmetry of any kind of multi-component mixture.



rate research

Read More

Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlation evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased, for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.
132 - Jean Decamp 2018
The main focus of this thesis is the theoretical study of strongly interacting quantum mixtures confined in one dimension and subjected to a harmonic external potential. Such strongly correlated systems can be realized and tested in ultracold atoms experiments. Their non-trivial permutational symmetry properties are investigated, as well as their interplay with correlations. Exploiting an exact solution at strong interactions, we extract general correlation properties encoded in the one-body density matrix and in the associated momentum distributions, in fermionic and Bose-Fermi mixtures. In particular, we obtain substantial results about the short-range behavior, and therefore the high-momentum tails, which display typical $k^{-4}$ laws. The weights of these tails, denoted as Tans contacts, are related to numerous thermodynamic properties of the systems such as the two-body correlations, the derivative of the energy with respect to the one-dimensional scattering length, or the static structure factor. We show that these universal Tans contacts also allow to characterize the spatial symmetry of the systems, and therefore is a deep connection between correlations and symmetries. Besides, the exchange symmetry is extracted using a group theory method, namely the class-sum method, which comes originally from nuclear physics. Moreover, we show that these systems follow a generalized version of the famous Lieb-Mattis theorem. Wishing to make our results as experimentally relevant as possible, we derive scaling laws for Tans contact as a function of the interaction, temperature and transverse confinement. These laws display interesting effects related to strong correlations and dimensionality.
In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and DMRG calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.
Using quantum Monte Carlo simulations, we study a mixture of bosons and fermions loaded on an optical lattice. With simple on-site repulsive interactions, this system can be driven into a solid phase. We dope this phase and, in analogy with pure bosonic systems, identify the conditions under which the bosons enter a supersolid phase, i.e., exhibiting at the same time charge density wave and superfluid order. We perform finite size scaling analysis to confirm the presence of a supersolid phase and discuss its properties, showing that it is a collective phase that also involve phase coherence of the fermions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا