Do you want to publish a course? Click here

Instantons and Entanglement Entropy

97   0   0.0 ( 0 )
 Added by Arpan Bhattacharyya
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We would like to put the area law -- believed to by obeyed by entanglement entropies in the ground state of a local field theory -- to scrutiny in the presence of non-perturbative effects. We study instanton corrections to entanglement entropy in various models whose instanton effects are well understood, including $U(1)$ gauge theory in 2+1 dimensions and false vacuum decay in $phi^4$ theory, and we demonstrate that the area law is indeed obeyed in these models. We also perform numerical computations for toy wavefunctions mimicking the theta vacuum of the (1+1)-dimensional Schwinger model. Our results indicate that such superpositions exhibit no more violation of the area law than the logarithmic behavior of a single Fermi surface.



rate research

Read More

155 - Song He , Feng-Li Lin , 2017
We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. We evaluate the single-interval Renyi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of Renyi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinskers and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states.
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of revivals; this observation provides a practical advantage in information processing. We also show that the complexity saturates much faster than the entanglement entropy in this system, and we provide a physical argument for this. Finally, we demonstrate that complexity is a less sensitive probe of topological order, compared with measures of entanglement.
69 - Qiang Wen 2019
The partial entanglement entropy (PEE) $s_{mathcal{A}}(mathcal{A}_i)$ characterizes how much the subset $mathcal{A}_i$ of $mathcal{A}$ contribute to the entanglement entropy $S_{mathcal{A}}$. We find one additional physical requirement for $s_{mathcal{A}}(mathcal{A}_i)$, which is the invariance under a permutation. The partial entanglement entropy proposal satisfies all the physical requirements. We show that for Poincare invariant theories the physical requirements are enough to uniquely determine the PEE (or the entanglement contour) to satisfy a general formula. This is the first time we find the PEE can be uniquely determined. Since the solution of the requirements is unique and the textit{PEE proposal} is a solution, the textit{PEE proposal} is justified for Poincare invariant theories.
90 - Yichen Huang 2020
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alpha>1$ grows no faster than diffusively (up to a sublogarithmic correction) if charge transport is not faster than diffusive. The proof was given only for qubit or spin-$1/2$ systems. In this note, I extend the proof to qudit systems, i.e., spin systems with local dimension $dge2$.
In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational trial wavefunctionals with the help of exact nonlinear canonical transformations. The calculability emph{bonanza} shown by these variational emph{ansatze} allows us to compute the entanglement entropy using the prescription for the ground state of free theories. In free theories, the entanglement entropy is determined by the two-point correlation functions. For the interacting case, we show that these two-point correlators can be replaced by their nonperturbatively corrected counterparts. Upon giving some general formulae for general interacting models we calculate the entanglement entropy of half space and compact regions for the $phi^4$ scalar field theory in 2D. Finally, we analyze the r^ole played by higher order correlators in our results and show that strong subadditivity is satisfied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا