Do you want to publish a course? Click here

Vibronic exciton theory of singlet fission. II. Two-dimensional spectroscopic detection of the correlated triplet pair state

68   0   0.0 ( 0 )
 Added by Roel Tempelaar
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Singlet fission, the molecular process through which photons are effectively converted into pairs of lower energy triplet excitons, holds promise as a means of boosting photovoltaic device efficiencies. In the preceding article of this series, we formulated a vibronic theory of singlet fission, inspired by previous experimental and theoretical studies suggesting that vibronic coupling plays an important role in fission dynamics. Here, we extend our model in order to simulate two-dimensional electronic spectra, through which the theory is further validated based on a comparison to recent measurements on pentacene crystals. Moreover, by means of such spectral simulations, we provide new insights into the nature of the correlated triplet pair state, the first product intermediate in the fission process. In particular, we address a disagreement in the literature regarding the identification, energies, and transition dipole moments of its optical transitions towards higher-lying triplet states.



rate research

Read More

Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
We extend the vibronic exciton theory introduced in our previous work to study singlet fission dynamics, in particular addressing recent indications of the importance of vibronic coupling in this process. A microscopic and non-perturbative treatment of electronic and selected vibrational degrees of freedom in combination with Redfield theory allows us to dynamically consider clusters of molecules under conditions close to those in molecular crystals that exhibit fission. Using bulk pentacene as a concrete example, our results identify a number of factors that render fission rapid and effective. Strong coupling to high-frequency Holstein modes generates resonances between the photo-prepared singlet and product triplet states. We furthermore find the large number of triplet combinations associated with bulk periodic systems to be critical to the fission process under such vibronically resonant conditions. In addition, we present results including, in an approximate manner, the effects of Peierls coupling, indicating that this factor can both enhance and suppress fission depending on its interplay with vibronic resonance and thermodynamics.
Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature even when the energy of S1 is as much as 200 meV less than 2T1. Here, we study films of TIPS-tetracene using transient optical spectroscopy and show that the initial rise of the triplet pair state (TT) occurs in 300 fs, matched by rapid loss of S1 stimulated emission, and that this process is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower 10 ps morphology-dependent phase of S1 decay and TT growth. We observe the TT to be thermally dissociated on 10-100 ns timescales to form free triplets. This provides a model for temperature independent, efficient TT formation and thermally activated TT separation.
While polarons --- charges bound to a lattice deformation induced by electron-phonon coupling --- are primary photoexcitations at room temperature in bulk metal-halide hybrid organic-inorganic perovskites (HOIP), excitons --- Coulomb-bound el-ectron-hole pairs --- are the stable quasi-particles in their two-dimensional (2D) analogues. Here we address the fundamental question: are polaronic effects consequential for excitons in 2D-HIOPs? Based on our recent work, we argue that polaronic effects are manifested intrinsically in the exciton spectral structure, which is comprised of multiple non-degenerate resonances with constant inter-peak energy spacing. We highlight our own measurements of population and dephasing dynamics that point to the apparently deterministic role of polaronic effects in excitonic properties. We contend that an interplay of long-range and short-range exciton-lattice couplings give rise to exciton polarons, a character that fundamentally establishes their effective mass and radius, and consequently, their quantum dynamics. Finally, we highlight opportunities for the community to develop the rigorous description of exciton polarons in 2D-HIOPs to advance their fundamental understanding as model systems for condensed-phase materials in which lattice-mediated correlations are fundamental to their physical properties.
We demonstrate the creation of a spin-1/2 state via the atomically controlled generation of magnetic carbon radical ions (CRIs) in synthetic two-dimensional transition metal dichalcogenides (TMDs). Hydrogenated carbon impurities located at chalcogen sites introduced by chemical doping can be activated with atomic precision by hydrogen depassivation using a scanning probe tip. In its anionic state, the carbon impurity exhibits a magnetic moment of 1 $mu_text{B}$ resulting from an unpaired electron populating a spin-polarized in-gap orbital of C$^{bullet -}_text{S}$. Fermi level control by the underlying graphene substrate can charge and decharge the defect, thereby activating or quenching the defect magnetic moment. By inelastic tunneling spectroscopy and density functional theory calculations we show that the CRI defect states couple to a small number of vibrational modes, including a local, breathing-type mode. Interestingly, the electron-phonon coupling strength critically depends on the spin state and differs for monolayer and bilayer WS$_2$. These carbon radical ions in TMDs comprise a new class of surface-bound, single-atom spin-qubits that can be selectively introduced, are spatially precise, feature a well-understood vibronic spectrum, and are charge state controlled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا