No Arabic abstract
Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
Singlet fission, the molecular process through which photons are effectively converted into pairs of lower energy triplet excitons, holds promise as a means of boosting photovoltaic device efficiencies. In the preceding article of this series, we formulated a vibronic theory of singlet fission, inspired by previous experimental and theoretical studies suggesting that vibronic coupling plays an important role in fission dynamics. Here, we extend our model in order to simulate two-dimensional electronic spectra, through which the theory is further validated based on a comparison to recent measurements on pentacene crystals. Moreover, by means of such spectral simulations, we provide new insights into the nature of the correlated triplet pair state, the first product intermediate in the fission process. In particular, we address a disagreement in the literature regarding the identification, energies, and transition dipole moments of its optical transitions towards higher-lying triplet states.
We extend the vibronic exciton theory introduced in our previous work to study singlet fission dynamics, in particular addressing recent indications of the importance of vibronic coupling in this process. A microscopic and non-perturbative treatment of electronic and selected vibrational degrees of freedom in combination with Redfield theory allows us to dynamically consider clusters of molecules under conditions close to those in molecular crystals that exhibit fission. Using bulk pentacene as a concrete example, our results identify a number of factors that render fission rapid and effective. Strong coupling to high-frequency Holstein modes generates resonances between the photo-prepared singlet and product triplet states. We furthermore find the large number of triplet combinations associated with bulk periodic systems to be critical to the fission process under such vibronically resonant conditions. In addition, we present results including, in an approximate manner, the effects of Peierls coupling, indicating that this factor can both enhance and suppress fission depending on its interplay with vibronic resonance and thermodynamics.
Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature even when the energy of S1 is as much as 200 meV less than 2T1. Here, we study films of TIPS-tetracene using transient optical spectroscopy and show that the initial rise of the triplet pair state (TT) occurs in 300 fs, matched by rapid loss of S1 stimulated emission, and that this process is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower 10 ps morphology-dependent phase of S1 decay and TT growth. We observe the TT to be thermally dissociated on 10-100 ns timescales to form free triplets. This provides a model for temperature independent, efficient TT formation and thermally activated TT separation.
Organic semiconductors exhibit properties of individual molecules and extended crystals simultaneously. The strongly bound excitons they host are typically described in the molecular limit, but excitons can delocalize over many molecules, raising the question of how important the extended crystalline nature is. Using accurate Greens function based methods for the electronic structure and non-perturbative finite difference methods for exciton-vibration coupling, we describe exciton interactions with molecular and crystal degrees of freedom concurrently. We find that the degree of exciton delocalization controls these interactions, with thermally activated crystal phonons predominantly coupling to delocalized states, and molecular quantum fluctuations predominantly coupling to localized states. Based on this picture, we quantitatively predict and interpret the temperature and pressure dependence of excitonic peaks in the acene series of organic semiconductors, which we confirm experimentally, and we develop a simple experimental protocol for probing exciton delocalization. Overall, we provide a unified picture of exciton delocalization and vibrational effects in organic semiconductors, reconciling the complementary views of finite molecular clusters and periodic molecular solids.
We study equilibrium and non-equilibrium properties of a two-level quantum dot close to the singlet-triplet transition. We treat the on-site Coulomb interaction and Hunds rule coupling perturbatively within the Keldysh formalism. We compute the spectral functions and the differential conductance of the dot. For moderate interactions our perturbative approach captures the Kondo effect and many of the experimentally observed properties.