No Arabic abstract
Information security is an important issue in vehicular networks as the accuracy and integrity of information is a prerequisite to satisfactory performance of almost all vehicular network applications. In this paper, we study the information security of a vehicular ad hoc network whose message may be tampered by malicious vehicles. An analytical framework is developed to analyze the process of message dissemination in a vehicular network with malicious vehicles randomly distributed in the network. The probability that a destination vehicle at a fixed distance away can receive the message correctly from the source vehicle is obtained. Simulations are conducted to validate the accuracy of the theoretical analysis. Our results demonstrate the impact of network topology and the distribution of malicious vehicles on the correct delivery of a message in vehicular ad hoc networks, and may provide insight on the design of security mechanisms to improve the security of message dissemination in vehicular networks.
With the growing interest in the use of internet of things (IoT), machine-to-machine (M2M) communications have become an important networking paradigm. In this paper, with recent advances in wireless network virtualization (WNV), we propose a novel framework for M2M communications in vehicular ad-hoc networks (VANETs) with WNV. In the proposed framework, according to different applications and quality of service (QoS) requirements of vehicles, a hypervisor enables the virtualization of the physical vehicular network, which is abstracted and sliced into multiple virtual networks. Moreover, the process of resource blocks (RBs) selection and random access in each virtual vehicular network is formulated as a partially observable Markov decision process (POMDP), which can achieve the maximum reward about transmission capacity. The optimal policy for RBs selection is derived by virtue of a dynamic programming approach. Extensive simulation results with different system parameters are presented to show the performance improvement of the proposed scheme.
VANETs (Vehicular Ad hoc Networks) are highly mobile wireless ad hoc networks and will play an important role in public safety communications and commercial applications. Routing of data in VANETs is a challenging task due to rapidly changing topology and high speed mobility of vehicles. Conventional routing protocols in MANETs (Mobile Ad hoc Networks) are unable to fully address the unique characteristics in vehicular networks. In this paper, we propose EBGR (Edge Node Based Greedy Routing), a reliable greedy position based routing approach to forward packets to the node present in the edge of the transmission range of source/forwarding node as most suitable next hop, with consideration of nodes moving in the direction of the destination. We propose Revival Mobility model (RMM) to evaluate the performance of our routing technique. This paper presents a detailed description of our approach and simulation results show that packet delivery ratio is improved considerably compared to other routing techniques of VANET.
Broadcast routing has become an important research field for vehicular ad-hoc networks (VANETs) recently. However, the packet delivery rate is generally low in existing VANET broadcast routing protocols. Therefore, the design of an appropriate broadcast protocol based on the features of VANET has become a crucial part of the development of VANET. This paper analyzes the disadvantage of existing broadcast routing protocols in VANETs, and proposes an improved algorithm (namely ODAM-C) based on the ODAM (Optimized Dissemination of Alarm Messages) protocol. The ODAM-C algorithm improves the packet delivery rate by two mechanisms based on the forwarding features of ODAM. The first distance-based mechanism reduces the possibility of packet loss by considering the angles between source nodes, forwarding nodes and receiving nodes. The second mechanism increases the redundancy of forwarding nodes to guarantee the packet success delivery ratio. We show by analysis and simulations that the proposed algorithm can improve packet delivery rate for vehicular networks compared against two widely-used existing protocols.
Secure message dissemination is an important issue in vehicular networks, especially considering the vulnerability of vehicle to vehicle message dissemination to malicious attacks. Traditional security mechanisms, largely based on message encryption and key management, can only guarantee secure message exchanges between known source and destination pairs. In vehicular networks however, every vehicle may learn its surrounding environment and contributes as a source, while in the meantime act as a destination or a relay of information from other vehicles, message exchanges often occur between stranger vehicles. For secure message dissemination in vehicular networks against insider attackers, who may tamper the content of the disseminated messages, ensuring the consistency and integrity of the transmitted messages becomes a major concern that traditional message encryption and key management based approaches fall short to provide. In this paper, by incorporating the underlying network topology information, we propose an optimal decision algorithm that is able to maximize the chance of making a correct decision on the message content, assuming the prior knowledge of the percentage of malicious vehicles in the network. Furthermore, a novel heuristic decision algorithm is proposed that can make decisions without the aforementioned knowledge of the percentage of malicious vehicles. Simulations are conducted to compare the security performance achieved by our proposed decision algorithms with that achieved by existing ones that do not consider or only partially consider the topological information, to verify the effectiveness of the algorithms. Our results show that by incorporating the network topology information, the security performance can be much improved. This work shed light on the optimum algorithm design for secure message dissemination.
How to enhance the communication efficiency and quality on vehicular networks is one critical important issue. While with the larger and larger scale of vehicular networks in dense cities, the real-world datasets show that the vehicular networks essentially belong to the complex network model. Meanwhile, the extensive research on complex networks has shown that the complex network theory can both provide an accurate network illustration model and further make great contributions to the network design, optimization and management. In this paper, we start with analyzing characteristics of a taxi GPS dataset and then establishing the vehicular-to-infrastructure, vehicle-to-vehicle and the hybrid communication model, respectively. Moreover, we propose a clustering algorithm for station selection, a traffic allocation optimization model and an information source selection model based on the communication performances and complex network theory.