Do you want to publish a course? Click here

Spin-orbit effective fields in Pt/GdFeCo bilayers

71   0   0.0 ( 0 )
 Added by Takahiro Moriyama
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the increasing interests on spin-orbit torque (SOT) with various magnetic materials, we investigated SOT in rare earth-transition metal ferrimagnetic alloys. The harmonic Hall measurements were performed in Pt/GdFeCo bilayers to quantify the effective fields resulting from the SOT. It is found that the damping-like torque rapidly increases near the magnetization compensation temperature TM of the GdFeCo, which is attributed to the reduction of the net magnetic moment.



rate research

Read More

We report the generation and detection of spin-orbit torque ferromagnetic resonance (STFMR) in micropatterned epitaxial Fe/Pt bilayers grown by molecular beam epitaxy. The magnetic field dependent measurements at an in-plane magnetic field angle of 45 degrees with respect to the microwave-current direction reveal the presence of two distinct voltage peaks indicative of a strong magnetic anisotropy. We show that STFMR can be employed to probe the underlying magnetic properties including the anisotropies in the Fe layer. We compare our STFMR results with broadband ferromagnetic resonance spectroscopy of the unpatterned bilayer thin films. The experimental STFMR measurements are interpreted using an analytical formalism and further confirmed using micromagnetic modeling, which shed light on the field-dependent magnetization alignment in the microstructures responsible for the STFMR rectification. Our results demonstrate a simple and efficient method for determining magnetic anisotropies in microstructures by means of rf spectroscopy.
We investigate ultrafast demagnetization due to electron-phonon interaction in a model band-ferromagnet. We show that the microscopic mechanism behind the spin dynamics due to electron-phonon interaction is the interplay of scattering and the precession around momentum-dependent effective internal spin-orbit magnetic fields. The resulting magnetization dynamics can only be mimicked by spin-flip transitions if the spin precession around the internal fields is sufficiently fast (compared to the scattering time) so that it averages out the transverse spin components.
Spin Hall magnetoresistance (SMR) and magnon excitation magnetoresistance (MMR) that all generate via the spin Hall effect and inverse spin Hall effect in a nonmagnetic material are always related to each other. However, the influence of magnon excitation for SMR is often overlooked due to the negligible MMR. Here, we investigate the SMR in Pt/Y3Fe5O12 (YIG) bilayers from 5 to 300K, in which the YIG are treated after Ar+-ion milling. The SMR in the treated device is smaller than in the non-treated. According to theoretical simulation, we attribute this phenomenon to the reduction of the interfacial spin-mixing conductance at the treated Pt/YIG interface induced by the magnon suppression. Our experimental results point out that the SMR and the MMR are inter-connected, and the former could be modulated via magnon excitation. Our findings provide a new approach for separating and clarifying the underlying mechanisms.
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven FMR technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, were analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the field-like torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.
Electrical detection of topological magnetic textures such as skyrmions is currently limited to conducting materials. While magnetic insulators offer key advantages for skyrmion technologies with high speed and low loss, they have not yet been explored electrically. Here, we report a prominent topological Hall effect in Pt/Tm$_3$Fe$_5$O$_{12}$ bilayers, where the pristine Tm$_3$Fe$_5$O$_{12}$ epitaxial films down to 1.25 unit cell thickness allow for tuning of topological Hall stability over a broad range from 200 to 465 K through atomic-scale thickness control. Although Tm$_3$Fe$_5$O$_{12}$ is insulating, we demonstrate the detection of topological magnetic textures through a novel phenomenon: spin-Hall topological Hall effect (SH-THE), where the interfacial spin-orbit torques allow spin-Hall-effect generated spins in Pt to experience the unique topology of the underlying skyrmions in Tm$_3$Fe$_5$O$_{12}$. This novel electrical detection phenomenon paves a new path for utilizing a large family of magnetic insulators in future skyrmion technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا