Do you want to publish a course? Click here

Scattering polarization of the $d$-states of ions and solar magnetic field: Effects of isotropic collisions

83   0   0.0 ( 0 )
 Added by Moncef Derouich
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Analysis of solar magnetic fields using observations as well as theoretical interpretations of the scattering polarization is commonly designated as a high priority area of the solar research. The interpretation of the observed polarization raises a serious theoretical challenge to the researchers involved in this field. In fact, realistic interpretations need detailed investigations of the depolarizing role of isotropic collisions with neutral hydrogen. The goal of this paper is to determine new relationships which allow the calculation of any collisional rates of the d-levels of ions by simply determining the value of n^* and $E_p$ without the need of determining the interaction potentials and treating the dynamics of collisions. The determination of n^* and E_p is easy and based on atomic data usually available online. Accurate collisional rates allow a reliable diagnostics of solar magnetic fields. In this work we applied our collisional FORTRAN code to a large number of cases involving complex and simple ions. After that, the results are utilized and injected in a genetic programming code developed with C-langugae in order to infer original relationships which will be of great help to solar applications. We discussed the accurarcy of our collisional rates in the cases of polarized complex atoms and atoms with hyperfine structure. The relationships are expressed on the tensorial basis and we explain how to include their contributions in the master equation giving the variation of the density matrix elements. As a test, we compared the results obtained through the general relationships provided in this work with the results obtained directly by running our code of collisions. These comparisons show a percentage of error of about 10% in the average value.



rate research

Read More

Our work is concerned with the case of the solar molecule CN which presents conspicuous profiles of scattering polarization. We start by calculating accurate PES for the singlet and triplet electronic ground states in order to characterize the collisions between the CN molecule in its $X ; ^2Sigma$ state and the hydrogen in its ground state $^2S$. The PES are included in the Schroodinger equation to obtain the scattering matrix and the probabilities of collisions. Depolarizing collisional rate coefficients are computed in the framework of the infinite order sudden approximation for temperatures ranging from $T= 2000$ K to $T= 15000$ K. Interpretation of the results and comparison between singlet and triplet collisional rate coefficients are detailed. We show that, for typical photospheric hydrogen density ($n_{H} = 10^{15}-10^{16}$ cm$^{-3}$), the $X ; ^2Sigma$ state of CN is partially or completely depolarized by isotropic collisions.
83 - M. Derouich 2016
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed hare and hound approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D$_{1}$ line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe {sc i} $lambda$ 6302.5 AA observed at IRSOL in Locarno.
114 - M. Luna , A. J. Diaz , 2012
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side. We have found the normal modes of the system, and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes, and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
230 - R. Centeno 2009
Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.
127 - Yongliang Song , Mei Zhang 2015
It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا