Do you want to publish a course? Click here

Inversion of Zeeman polarization for solar magnetic field diagnostics

84   0   0.0 ( 0 )
 Added by Moncef Derouich
 Publication date 2016
  fields Physics
and research's language is English
 Authors M. Derouich




Ask ChatGPT about the research

The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed hare and hound approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D$_{1}$ line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe {sc i} $lambda$ 6302.5 AA observed at IRSOL in Locarno.



rate research

Read More

77 - Rui Zhu , Baolin Tan , Yingna Su 2020
We have performed microwave diagnostics of the magnetic field strengths in solar flare loops based on the theory of gyrosynchrotron emission. From Nobeyama Radioheliograph observations of three flare events at 17 and 34 GHz, we obtained the degree of circular polarization and the spectral index of microwave flux density, which were then used to map the magnetic field strengths in post-flare loops. Our results show that the magnetic field strength typically decreases from ~800 G near the loop footpoints to ~100 G at a height of 10--25 Mm. Comparison of our results with magnetic field modeling using a flux rope insertion method is also discussed. Our study demonstrates the potential of microwave imaging observations, even at only two frequencies, in diagnosing the coronal magnetic field of flaring regions.
118 - H. Peter 2013
Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme UV spectro-polarimetry. While for coronal diagnostic techniques already exist through infrared coronagraphy above the limb and radio observations on the disk, for the transition region one has to investigate extreme UV observations. However, so far the success of such observations has been limited, but there are various projects to get spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect for such observations through realistic forward modeling. We employ a 3D MHD forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C IV 1548 A. A signal well above 0.001 in Stokes V can be expected, even when integrating for several minutes in order to reach the required signal-to-noise ratio, despite the fact that the intensity in the model is rapidly changing (just as in observations). Often this variability of the intensity is used as an argument against transition region magnetic diagnostics which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and thus when integrating in time the degree of (circular) polarization remains rather constant. Our study shows the feasibility to measure the transition region magnetic field, if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.
The goal of this study is to explore a novel method for the solar photospheric magnetic field diagnostics using Stokes V widths of different magnetosensitive Fe~I spectral lines. We calculate Stokes I and V profiles of several Fe I lines based on a one-dimensional photospheric model VAL C using the NICOLE radiative transfer code. These profiles are used to produce calibration curves linking the intrinsic magnetic field values with the widths of blue peaks of Stokes V profiles. The obtained calibration curves are then tested using the Stokes profiles calculated for more realistic photospheric models based on MHD models of magneto-convection. It is shown that the developed Stokes V widths (SVW) method can be used with various optical and near-infrared lines. Out of six lines considered in this study, FeI 6301 line appears to be the most effective: it is sensitive to fields over ~200G and does not show any saturation up to ~2kG. Other lines considered can also be used for the photospheric field diagnostics with this method, however, only in narrower field value ranges, typically from about 100G to 700-1000G. The developed method can be a useful alternative to the classical magnetic line ratio method, particularly when the choice of lines is limited.
300 - Alexei A. Pevtsov 2021
Full disk vector magnetic fields are used widely for developing better understanding of large-scale structure, morphology, and patterns of the solar magnetic field. The data are also important for modeling various solar phenomena. However, observations of vector magnetic fields have one important limitation that may affect the determination of the true magnetic field orientation. This limitation stems from our ability to interpret the differing character of the Zeeman polarization signals which arise from the photospheric line-of-sight vs. the transverse components of the solar vector magnetic field, and is likely exacerbated by unresolved structure (non-unity fill fraction) as well as the disambiguation of the 180$^circ$ degeneracy in the transverse-field azimuth. Here we provide a description of this phenomenon, and discuss issues, which require additional investigation.
According to the scheme of action of the solar dynamo, the poloidal magnetic field can be considered a source of production of the toroidal magnetic field by the solar differential rotation. From the polar magnetic field proxies, it is natural to expect that solar Cycle 25 will be weak as recorded in sunspot data. We suggest that there are parameters of the zonal harmonics of the solar surface magnetic field, such as the magnitude of the $ell$=3 harmonic or the effective multipole index, that can be used as a reasonable addition to the polar magnetic field proxies. We discuss also some specific features of solar activity indices in Cycles 23 and 24.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا