Do you want to publish a course? Click here

Effects of non-radial magnetic field on measuring magnetic helicity transport across solar photosphere

126   0   0.0 ( 0 )
 Added by Yongliang Song
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.



rate research

Read More

The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfven wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in a 24 hour long Hinode/NFI magnetogram sequence with 90 second cadence, and study both the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 seconds, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short temporal increments is a consequence of random changes in the barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in the distribution can be modeled analytically by accounting for supergranular advection along with motions due to granulation. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive trace motions in measured photospheric flows may yield more robust transport statistics.
Helicity is a fundamental property of a magnetic field but to date it has only been possible to observe its evolution in one star - the Sun. In this paper we provide a simple technique for mapping the large-scale helicity density across the surface of any star using only observable quantities: the poloidal and toroidal magnetic field components (which can be determined from Zeeman-Doppler imaging) and the stellar radius. We use a sample of 51 stars across a mass range of 0.1-1.34 M$_odot$ to show how the helicity density relates to stellar mass, Rossby number, magnetic energy and age. We find that the large-scale helicity density increases with decreasing Rossby number $R_o$, peaking at $R_o simeq 0.1$, with a saturation or decrease below that. For both fully- and partially-convective stars we find that the mean absolute helicity density scales with the mean squared toroidal magnetic flux density according to the power law: $|langle{h,}rangle|$ $propto$ $langle{rm{B_{tor}}^2_{},rangle}^{0.86,pm,0.04}$. The scatter in this relation is consistent with the variation across a solar cycle, which we compute using simulations and observations across solar cycles 23 and 24 respectively. We find a significant decrease in helicity density with age.
We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24. Longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e. Hc is predominantly negative in the North and positive in South. Although our data include the early phase of cycle 24, there appears no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of cycle as predicted by some dynamo models. Further, we compute the hemispheric pattern in active region latitudes (-30 deg le theta le 30 deg) separately for weak (100< |B_r| <500 G)and strong (|B_r|>1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., theta . Hc < 0), H_c of weak fields exhibits an inverse hemispheric behavior (i.e., theta . Hc > 0) albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field region.
64 - K. Takahata , H. Hotta , Y. Iida 2021
We perform radiative magnetohydrodynamic calculations for the solar quiet region to investigate the dependence of statistical flow on magnetic properties and the three-dimensional (3D) structure of magnetic patches in the presence of large-scale flow that mimics differential rotation. It has been confirmed that strong magnetic field patches move faster in the longitudinal direction at the solar surface. Consequently, strong magnetic patches penetrate deeper into the solar interior. The motion of the deep-rooted magnetic patches is influenced by the faster differential rotation in the deeper layer. In this study, we perform realistic radiative magnetohydrodynamic calculations using R2D2 code to validate that stronger patches have deeper roots. We also add large-scale flow to mimic the differential rotation. The magnetic patches are automatically detected and tracked, and we evaluate the depth of 30,000 magnetic patches. The velocities of 2.9 million magnetic patches are then measured at the photosphere. We obtain the dependence of these values on the magnetic properties, such as field strength and flux. Our results confirm that strong magnetic patches tend to show deeper roots and faster movement, and we compare our results with observations using the point spread function of instruments at the Hinode and Solar Dynamics Observatory (SDO). Our result is quantitatively consistent with previous observational results of the SDO.
77 - V.V. Pipin 2020
In the paper we study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density pattern around the bipolar regions depends on the configuration of the ambient large-scale magnetic field, and in general they show the quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time-latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions show two bands of sign for the density distribution in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to the surface differential rotation. Examining effect of helicity fluxes from the bipolar regions on the large-scale dynamo we find that its effect to the dynamo saturation is negligible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا