Do you want to publish a course? Click here

A closed-form representation of mean-variance hedging for additive processes via Malliavin calculus

61   0   0.0 ( 0 )
 Added by Takuji Arai
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump type models have already been suggested, but none is suited to develop numerical methods of the values of strategies for any given time up to the maturity. In this paper, we aim to derive a new explicit closed-form representation, which enables us to develop an efficient numerical method using the fast Fourier transforms. Note that our representation is described in terms of Malliavin derivatives. In addition, we illustrate numerical results for exponential Levy models.



rate research

Read More

We consider explicit approximations for European put option prices within the Stochastic Verhulst model with time-dependent parameters, where the volatility process follows the dynamics $dV_t = kappa_t (theta_t - V_t) V_t dt + lambda_t V_t dB_t$. Our methodology involves writing the put option price as an expectation of a Black-Scholes formula, reparameterising the volatility process and then performing a number of expansions. The difficulties faced are computing a number of expectations induced by the expansion procedure explicitly. We do this by appealing to techniques from Malliavin calculus. Moreover, we deduce that our methodology extends to models with more general drift and diffusion coefficients for the volatility process. We obtain the explicit representation of the form of the error generated by the expansion procedure, and we provide sufficient ingredients in order to obtain a meaningful bound. Under the assumption of piecewise-constant parameters, our approximation formulas become closed-form, and moreover we are able to establish a fast calibration scheme. Furthermore, we perform a numerical sensitivity analysis to investigate the quality of our approximation formula in the Stochastic Verhulst model, and show that the errors are well within the acceptable range for application purposes.
We provide a new characterization of mean-variance hedging strategies in a general semimartingale market. The key point is the introduction of a new probability measure $P^{star}$ which turns the dynamic asset allocation problem into a myopic one. The minimal martingale measure relative to $P^{star}$ coincides with the variance-optimal martingale measure relative to the original probability measure $P$.
In the papers Carmona and Durrleman [7] and Bjerksund and Stensland [1], closed form approximations for spread call option prices were studied under the log normal models. In this paper, we give an alternative closed form formula for the price of spread call options under the log-normal models also. Our formula can be seen as a generalization of the closed-form formula presented in Bjerksund and Stensland [1] as their formula can be obtained by selecting special parameter values to our formula. Numerical tests show that our formula performs better for certain range of model parameters than the closed-form formula presented in Bjerksund and Stensland [1].
In an incomplete market, with incompleteness stemming from stochastic factors imperfectly correlated with the underlying stocks, we derive representations of homothetic (power, exponential and logarithmic) forward performance processes in factor-form using ergodic BSDE. We also develop a connection between the forward processes and infinite horizon BSDE, and, moreover, with risk-sensitive optimization. In addition, we develop a connection, for large time horizons, with a family of classical homothetic value function processes with random endowments.
In this paper, we propose a new class of optimization problems, which maximize the terminal wealth and accumulated consumption utility subject to a mean variance criterion controlling the final risk of the portfolio. The multiple-objective optimization problem is firstly transformed into a single-objective one by introducing the concept of overall happiness of an investor defined as the aggregation of the terminal wealth under the mean-variance criterion and the expected accumulated utility, and then solved under a game theoretic framework. We have managed to maintain analytical tractability; the closed-form solutions found for a set of special utility functions enable us to discuss some interesting optimal investment strategies that have not been revealed before in literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا