No Arabic abstract
In an incomplete market, with incompleteness stemming from stochastic factors imperfectly correlated with the underlying stocks, we derive representations of homothetic (power, exponential and logarithmic) forward performance processes in factor-form using ergodic BSDE. We also develop a connection between the forward processes and infinite horizon BSDE, and, moreover, with risk-sensitive optimization. In addition, we develop a connection, for large time horizons, with a family of classical homothetic value function processes with random endowments.
This paper studies an optimal forward investment problem in an incomplete market with model uncertainty, in which the underlying stocks depend on the correlated stochastic factors. The uncertainty stems from the probability measure chosen by an investor to evaluate the performance. We obtain directly the representation of the homothetic robust forward performance processes in factor-form by combining the zero-sum stochastic differential game and ergodic BSDE approach. We also establish the connections with the risk-sensitive zero-sum stochastic differential games over an infinite horizon with ergodic payoff criteria, as well as with the classical robust expected utilities for long time horizons. Finally, we give an example to illustrate that our approach can be applied to address a type of robust forward investment performance processes with negative realization processes.
We consider the problem of optimal portfolio selection under forward investment performance criteria in an incomplete market. Given multiple traded assets, the prices of which depend on multiple observable stochastic factors, we construct a large class of forward performance processes with power-utility initial data, as well as the corresponding optimal portfolios. This is done by solving the associated non-linear parabolic partial differential equations (PDEs) posed in the wrong time direction, for stock-factor correlation matrices with eigenvalue equality (EVE) structure, which we introduce here. Along the way we establish on domains an explicit form of the generalized Widders theorem of Nadtochiy and Tehranchi [NT15, Theorem 3.12] and rely hereby on the Laplace inversion in time of the solutions to suitable linear parabolic PDEs posed in the right time direction.
We consider the problem of optimal portfolio selection under forward investment performance criteria in an incomplete market. The dynamics of the prices of the traded assets depend on a pair of stochastic factors, namely, a slow factor (e.g. a macroeconomic indicator) and a fast factor (e.g. stochastic volatility). We analyze the associated forward performance SPDE and provide explicit formulae for the leading order and first order correction terms for the forward investment process and the optimal feedback portfolios. They both depend on the investors initial preferences and the dynamically changing investment opportunities. The leading order terms resemble their time-monotone counterparts, but with the appropriate stochastic time changes resulting from averaging phenomena. The first-order terms compile the reaction of the investor to both the changes in the market input and his recent performance. Our analysis is based on an expansion of the underlying ill-posed HJB equation, and it is justified by means of an appropriate remainder estimate.
We introduce and solve a new type of quadratic backward stochastic differential equation systems defined in an infinite time horizon, called emph{ergodic BSDE systems}. Such systems arise naturally as candidate solutions to characterize forward performance processes and their associated optimal trading strategies in a regime switching market. In addition, we develop a connection between the solution of the ergodic BSDE system and the long-term growth rate of classical utility maximization problems, and use the ergodic BSDE system to study the large time behavior of PDE systems with quadratic growth Hamiltonians.
We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump type models have already been suggested, but none is suited to develop numerical methods of the values of strategies for any given time up to the maturity. In this paper, we aim to derive a new explicit closed-form representation, which enables us to develop an efficient numerical method using the fast Fourier transforms. Note that our representation is described in terms of Malliavin derivatives. In addition, we illustrate numerical results for exponential Levy models.