Do you want to publish a course? Click here

Pressure induced half-collapsed-tetragonal phase in CaKFe$_4$As$_4$

113   0   0.0 ( 0 )
 Added by Udhara Kaluarachchi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the temperature-pressure phase diagram of CaKFe$_4$As$_4$ established using high pressure electrical resistivity, magnetization and high energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe$_4$As$_4$ is suppressed and then disappears at $p$ $gtrsim$ 4 GPa. High pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe$_4$As$_4$ under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially vertical, occuring at 4.0(5) GPa for temperatures below 150 K. Band structure calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding takes place across the Ca-layer. Bonding across the K-layer only occurs for $p$ $geq$ 12 GPa. These findings demonstrate a new type of collapsed tetragonal phase in CaKFe$_4$As$_4$: a half-collapsed-tetragonal phase.



rate research

Read More

The magnetic penetration depth anisotropy $gamma_lambda=lambda_{c}/lambda_{ab}$ ($lambda_{ab}$ and $lambda_{c}$ are the in-plane and the out-of-plane components of the magnetic penetration depth) in a CaKFe$_4$As$_4$ single crystal sample (the critical temperature $T_{rm c}simeq 35$ K) was studied by means of muon-spin rotation ($mu$SR). $gamma_lambda$ is almost temperature independent for $Tlesssim 20$ K ($gamma_lambdasimeq 1.9$) and it reaches $simeq 3.0$ by approaching $T_{rm c}$. The change of $gamma_lambda$ induces the corresponding rearrangement of the flux line lattice (FLL), which is clearly detected via enhanced distortions of the FLL $mu$SR response. Comparison of $gamma_lambda$ with the anisotropy of the upper critical field ($gamma_{H_{rm c2}}$) studied in Phys. Rev B {bf 94}, 064501 (2016), reveals that $gamma_lambda$ is systematically higher than $gamma_{H_{rm c2}}$ at low-temperatures and approaches $gamma_{H_{rm c2}}$ for $T rightarrow T_{rm c}$. The anisotropic properties of $lambda$ are explained by the multi-gap nature of superconductivity in CaKFe$_4$As$_4$ and are caused by anisotropic contributions of various bands to the in-plane and the out-of-plane components of the superfluid density.
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
By performing pressure simulations within density functional theory for the family of iron-based superconductors $Ae{}A$Fe$_4$As$_4$ with $Ae$ = Ca, Sr, Ba and $A$ = K, Rb, Cs we predict in these systems the appearance of two consecutive half-collapsed tetragonal transitions at pressures $P_{c_1}$ and $P_{c_2}$, which have a different character in terms of their effect on the electronic structure. We find that, similarly to previous studies for CaKFe$_4$As$_4$, spin-vortex magnetic fluctuations on the Fe sublattice play a key role for an accurate structure prediction in these materials at zero pressure. We identify clear trends of critical pressures and discuss the relevance of the collapsed phases in connection to magnetism and superconductivity. Finally, the intriguing cases of EuRbFe$_4$As$_4$ and EuCsFe$_4$As$_4$, where Eu magnetism coexists with superconductivity, are discussed as well in the context of half-collapsed phases.
146 - A. Kreyssig , M. A. Green , Y. Lee 2008
Recent investigations of the superconducting iron-arsenide families have highlighted the role of pressure, be it chemical or mechanical, in fostering superconductivity. Here we report that CaFe2As2 undergoes a pressure-induced transition to a non-magnetic, volume collapsed tetragonal phase, which becomes superconducting at lower temperature. Spin-polarized total-energy calculations on the collapsed structure reveal that the magnetic Fe moment itself collapses, consistent with the absence of magnetic order in neutron diffraction.
Measurements of the London penetration depth and tunneling conductance in single crystals of the recently discovered stoicheometric, iron - based superconductor, CaKFe$_4$As$_4$ (CaK1144) show nodeless, two effective gap superconductivity with a larger gap of about 6-9 meV and a smaller gap of about 1-4 meV. Having a critical temperature, $T_{c,onset}approx$35.8 K, this material behaves similar to slightly overdoped Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ (e.g. $x=$0.54, $T_c approx$ 34 K)---a known multigap $s_{pm}$ superconductor. We conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap $s_{pm}$ superconductivity is an essential property of high temperature superconductivity in iron - based superconductors, independent of the degree of substitutional disorder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا