Do you want to publish a course? Click here

Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering

133   0   0.0 ( 0 )
 Added by Andreas Kreyssig
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent investigations of the superconducting iron-arsenide families have highlighted the role of pressure, be it chemical or mechanical, in fostering superconductivity. Here we report that CaFe2As2 undergoes a pressure-induced transition to a non-magnetic, volume collapsed tetragonal phase, which becomes superconducting at lower temperature. Spin-polarized total-energy calculations on the collapsed structure reveal that the magnetic Fe moment itself collapses, consistent with the absence of magnetic order in neutron diffraction.



rate research

Read More

We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
Temperature dependent measurements of 57Fe Mossbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z-coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe - As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
Inelastic neutron scattering measurements of CaFe2As2 under applied hydrostatic pressure show that the antiferromagnetic spin fluctuations observed in the ambient pressure, paramagnetic, tetragonal (T) phase are strongly suppressed, if not absent, in the collapsed tetragonal (cT) phase. These results are consistent with a quenched Fe moment in the cT phase and the strong decrease in resistivity observed upon crossing the boundary from the T to cT phase. The suppression or absence of static antiferromagnetic order and dynamic spin fluctuations in the non-superconducting cT phase supports the notion of a coupling between spin fluctuations and superconductivity in the iron arsenides.
We report the temperature-pressure phase diagram of CaKFe$_4$As$_4$ established using high pressure electrical resistivity, magnetization and high energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe$_4$As$_4$ is suppressed and then disappears at $p$ $gtrsim$ 4 GPa. High pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe$_4$As$_4$ under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially vertical, occuring at 4.0(5) GPa for temperatures below 150 K. Band structure calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding takes place across the Ca-layer. Bonding across the K-layer only occurs for $p$ $geq$ 12 GPa. These findings demonstrate a new type of collapsed tetragonal phase in CaKFe$_4$As$_4$: a half-collapsed-tetragonal phase.
The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا