Do you want to publish a course? Click here

A Graphical Evolutionary Game Approach to Social Learning

163   0   0.0 ( 0 )
 Added by Xuanyu Cao
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this work, we study the social learning problem, in which agents of a networked system collaborate to detect the state of the nature based on their private signals. A novel distributed graphical evolutionary game theoretic learning method is proposed. In the proposed game-theoretic method, agents only need to communicate their binary decisions rather than the real-valued beliefs with their neighbors, which endows the method with low communication complexity. Under mean field approximations, we theoretically analyze the steady state equilibria of the game and show that the evolutionarily stable states (ESSs) coincide with the decisions of the benchmark centralized detector. Numerical experiments are implemented to confirm the effectiveness of the proposed game-theoretic learning method.



rate research

Read More

Distributed adaptive filtering has been considered as an effective approach for data processing and estimation over distributed networks. Most existing distributed adaptive filtering algorithms focus on designing different information diffusion rules, regardless of the nature evolutionary characteristic of a distributed network. In this paper, we study the adaptive network from the game theoretic perspective and formulate the distributed adaptive filtering problem as a graphical evolutionary game. With the proposed formulation, the nodes in the network are regarded as players and the local combiner of estimation information from different neighbors is regarded as different strategies selection. We show that this graphical evolutionary game framework is very general and can unify the existing adaptive network algorithms. Based on this framework, as examples, we further propose two error-aware adaptive filtering algorithms. Moreover, we use graphical evolutionary game theory to analyze the information diffusion process over the adaptive networks and evolutionarily stable strategy of the system. Finally, simulation results are shown to verify the effectiveness of our analysis and proposed methods.
Mobile Edge Caching is a promising technique to enhance the content delivery quality and reduce the backhaul link congestion, by storing popular content at the network edge or mobile devices (e.g. base stations and smartphones) that are proximate to content requesters. In this work, we study a novel mobile edge caching framework, which enables mobile devices to cache and share popular contents with each other via device-to-device (D2D) links. We are interested in the following incentive problem of mobile device users: whether and which users are willing to cache and share what contents, taking the user mobility and cost/reward into consideration. The problem is challenging in a large-scale network with a large number of users. We introduce the evolutionary game theory, an effective tool for analyzing large-scale dynamic systems, to analyze the mobile users content caching and sharing strategies. Specifically, we first derive the users best caching and sharing strategies, and then analyze how these best strategies change dynamically over time, based on which we further characterize the system equilibrium systematically. Simulation results show that the proposed caching scheme outperforms the existing schemes in terms of the total transmission cost and the cellular load. In particular, in our simulation, the total transmission cost can be reduced by 42.5%-55.2% and the cellular load can be reduced by 21.5%-56.4%.
Federated learning is a distributed learning paradigm where multiple agents, each only with access to local data, jointly learn a global model. There has recently been an explosion of research aiming not only to improve the accuracy rates of federated learning, but also provide certain guarantees around social good properties such as total error. One branch of this research has taken a game-theoretic approach, and in particular, prior work has viewed federated learning as a hedonic game, where error-minimizing players arrange themselves into federating coalitions. This past work proves the existence of stable coalition partitions, but leaves open a wide range of questions, including how far from optimal these stable solutions are. In this work, we motivate and define a notion of optimality given by the average error rates among federating agents (players). First, we provide and prove the correctness of an efficient algorithm to calculate an optimal (error minimizing) arrangement of players. Next, we analyze the relationship between the stability and optimality of an arrangement. First, we show that for some regions of parameter space, all stable arrangements are optimal (Price of Anarchy equal to 1). However, we show this is not true for all settings: there exist examples of stable arrangements with higher cost than optimal (Price of Anarchy greater than 1). Finally, we give the first constant-factor bound on the performance gap between stability and optimality, proving that the total error of the worst stable solution can be no higher than 9 times the total error of an optimal solution (Price of Anarchy bound of 9).
Film release dates play an important part in box office revenues because of the facts of obvious seasonality demand in the film industry and severe competition among films shown at the same time. In this paper, we study how film studios choose release time for movies they produce to maximize their box offices. We first formalize this problem as an attraction competition game where players (film studios) consider both potential profits and competitors choices when deciding the release time. Then we prove that there always exists a pure Nash equilibrium and give the sufficient condition of the uniqueness of the Nash equilibrium. Our model can be generalized to an extensive game and we compute the subgame-perfect equilibrium for homogeneous players. For the case that one film studio could have multiple movies to release, we prove that finding a players best response is NP-hard and it does not guarantee the existence of a pure Nash equilibrium. Experiments are provided to support the soundness of our model. In the final state, most of film studios, accounting for 84 percent of the market, would not change their release time. The behaviors of film studios imply they are following some strategies to reach a Nash equilibrium.
How users in a dynamic system perform learning and make decision become more and more important in numerous research fields. Although there are some works in the social learning literatures regarding how to construct belief on an uncertain system state, few study has been conducted on incorporating social learning with decision making. Moreover, users may have multiple concurrent decisions on different objects/resources and their decisions usually negatively influence each others utility, which makes the problem even more challenging. In this paper, we propose an Indian Buffet Game to study how users in a dynamic system learn the uncertain system state and make multiple concurrent decisions by not only considering the current myopic utility, but also taking into account the influence of subsequent users decisions. We analyze the proposed Indian Buffet Game under two different scenarios: customers request multiple dishes without budget constraint and with budget constraint. For both cases, we design recursive best response algorithms to find the subgame perfect Nash equilibrium for customers and characterize special properties of the Nash equilibrium profile under homogeneous setting. Moreover, we introduce a non-Bayesian social learning algorithm for customers to learn the system state, and theoretically prove its convergence. Finally, we conduct simulations to validate the effectiveness and efficiency of the proposed algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا