Do you want to publish a course? Click here

Distributed Adaptive Networks: A Graphical Evolutionary Game-Theoretic View

287   0   0.0 ( 0 )
 Added by Chunxiao Jiang
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Distributed adaptive filtering has been considered as an effective approach for data processing and estimation over distributed networks. Most existing distributed adaptive filtering algorithms focus on designing different information diffusion rules, regardless of the nature evolutionary characteristic of a distributed network. In this paper, we study the adaptive network from the game theoretic perspective and formulate the distributed adaptive filtering problem as a graphical evolutionary game. With the proposed formulation, the nodes in the network are regarded as players and the local combiner of estimation information from different neighbors is regarded as different strategies selection. We show that this graphical evolutionary game framework is very general and can unify the existing adaptive network algorithms. Based on this framework, as examples, we further propose two error-aware adaptive filtering algorithms. Moreover, we use graphical evolutionary game theory to analyze the information diffusion process over the adaptive networks and evolutionarily stable strategy of the system. Finally, simulation results are shown to verify the effectiveness of our analysis and proposed methods.



rate research

Read More

162 - Xuanyu Cao , K. J. Ray Liu 2017
In this work, we study the social learning problem, in which agents of a networked system collaborate to detect the state of the nature based on their private signals. A novel distributed graphical evolutionary game theoretic learning method is proposed. In the proposed game-theoretic method, agents only need to communicate their binary decisions rather than the real-valued beliefs with their neighbors, which endows the method with low communication complexity. Under mean field approximations, we theoretically analyze the steady state equilibria of the game and show that the evolutionarily stable states (ESSs) coincide with the decisions of the benchmark centralized detector. Numerical experiments are implemented to confirm the effectiveness of the proposed game-theoretic learning method.
307 - Ran Tian , Sisi Li , Nan Li 2018
In this paper, we propose a decision making algorithm for autonomous vehicle control at a roundabout intersection. The algorithm is based on a game-theoretic model representing the interactions between the ego vehicle and an opponent vehicle, and adapts to an online estimated driver type of the opponent vehicle. Simulation results are reported.
Complex networks tend to display communities which are groups of nodes cohesively connected among themselves in one group and sparsely connected to the remainder of the network. Detecting such communities is an important computational problem, since it provides an insight into the functionality of networks. Further, investigating community structure in a dynamic network, where the network is subject to change, is even more challenging. This paper presents a game-theoretical technique for detecting community structures in dynamic as well as static complex networks. In our method, each node takes the role of a player that attempts to gain a higher payoff by joining one or more communities or switching between them. The goal of the game is to reveal community structure formed by these players by finding a Nash-equilibrium point among them. To the best of our knowledge, this is the first game-theoretic algorithm which is able to extract overlapping communities from either static or dynamic networks. We present the experimental results illustrating the effectiveness of the proposed method on both synthetic and real-world networks.
157 - Feiran Jia , Aditya Mate , Zun Li 2021
We present the design and analysis of a multi-level game-theoretic model of hierarchical policy-making, inspired by policy responses to the COVID-19 pandemic. Our model captures the potentially mismatched priorities among a hierarchy of policy-makers (e.g., federal, state, and local governments) with respect to two main cost components that have opposite dependence on the policy strength, such as post-intervention infection rates and the cost of policy implementation. Our model further includes a crucial third factor in decisions: a cost of non-compliance with the policy-maker immediately above in the hierarchy, such as non-compliance of state with federal policies. Our first contribution is a closed-form approximation of a recently published agent-based model to compute the number of infections for any implemented policy. Second, we present a novel equilibrium selection criterion that addresses common issues with equilibrium multiplicity in our setting. Third, we propose a hierarchical algorithm based on best response dynamics for computing an approximate equilibrium of the hierarchical policy-making game consistent with our solution concept. Finally, we present an empirical investigation of equilibrium policy strategies in this game in terms of the extent of free riding as well as fairness in the distribution of costs depending on game parameters such as the degree of centralization and disagreements about policy priorities among the agents.
Suppose that an $m$-simplex is partitioned into $n$ convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance $epsilon$ from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant $m$ uses $poly(n, log left( frac{1}{epsilon} right))$ queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant $n$ uses $poly(m, log left( frac{1}{epsilon} right))$ queries. We show via Kakutanis fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا