Do you want to publish a course? Click here

Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn$_{2}$As$_{2}$

176   0   0.0 ( 0 )
 Added by Robert J. McQueeney
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

BaMn$_{2}$As$_{2}$ is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Neel temperature ($T_mathrm{N}$) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different powder samples of Ba$_{1-x}$K$_{x}$Mn$_{2}$As$_{2}$ with $x=$0, 0.125 and 0.25 to study the effect of hole doping and metallization on the spin dynamics of these compounds. We compare the neutron intensities to a linear spin wave theory approximation to the $J_{1}-J_{2}-J_{c}$ Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of $T_mathrm{N}$ with doping.



rate research

Read More

We report Resonant Inelastic X-ray Scattering (RIXS) study of the magnetic excitation spectrum in a highly insulating Eu$_{2}$Ir$_{2}$O$_{7}$ single crystal that exhibits a metal-insulator transition at $T_{MI}$ = 111(7) K. A propagating magnon mode with 20 meV bandwidth and 28 meV magnon gap is found in the excitation spectrum at 7 K, which is expected in the all-in-all-out (AIAO) magnetically ordered state. This magnetic excitation exhibits substantial softening as temperature is raised towards $T_{MI}$, and turns into highly damped excitation in the paramagnetic phase. Remarkably, the softening occurs throughout the whole Brillouin zone including the zone boundary. This observation is inconsistent with magnon renormalization expected in a local moment system, and indicates that the strength of electron correlation in Eu$_{2}$Ir$_{2}$O$_{7}$ is only moderate, so that electron itinerancy should be taken into account in describing its magnetism.
The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.
We present angle resolved photoemission (ARPES) data on Na-doped Ca$_2$CuO$_2$Cl$_2$. We demonstrate that the chemical potential shifts upon doping the system across the insulator to metal transition. The resulting low energy spectra reveal a gap structure which appears to deviate from the canonical $d_{x2-y2} ~ |cos(k_x a)-cos(k_y a)|$ form. To reconcile the measured gap structure with d-wave superconductivity one can understand the data in terms of two gaps, a very small one contributing to the nodal region and a very large one dominating the anti-nodal region. The latter is a result of the electronic structure observed in the undoped antiferromagnetic insulator. Furthermore, the low energy electronic structure of the metallic sample contains a two component structure in the nodal direction, and a change in velocity of the dispersion in the nodal direction at roughly 50 meV. We discuss these results in connection with photoemission data on other cuprate systems.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density $n_g$; (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.
We report high-resolution neutron scattering measurements of the low energy spin fluctuations of KFe$_{2}$As$_{2}$, the end member of the hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ family with only hole pockets, above and below its superconducting transition temperature $T_c$ ($sim$ 3.5 K). Our data reveals clear spin fluctuations at the incommensurate wave vector ($0.5pmdelta$, 0, $L$), ($delta$ = 0.2)(1-Fe unit cell), which exhibit $L$-modulation peaking at $L=0.5$. Upon cooling to the superconducting state, the incommensurate spin fluctuations gradually open a spin-gap and form a sharp spin resonance mode. The incommensurability ($2delta$ = 0.4) of the resonance mode ($sim1.2$ meV) is considerably larger than the previously reported value ($2delta$ $approx0.32$) at higher energies ($gesim6$ meV). The determination of the momentum structure of spin fluctuation in the low energy limit allows a direct comparison with the realistic Fermi surface and superconducting gap structure. Our results point to an $s$-wave pairing with a reversed sign between the hole pockets near the zone center in KFe$_{2}$As$_{2}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا