Do you want to publish a course? Click here

Generalized TMDs and the exclusive double Drell-Yan process

91   0   0.0 ( 0 )
 Added by Andreas Metz
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Generalized transverse momentum dependent parton distributions (GTMDs) are the most general parton correlation functions of hadrons. By considering the exclusive double Drell-Yan process it is shown for the first time how quark GTMDs can be measured. Specific GTMDs can be addressed by means of polarization observables.



rate research

Read More

Being the mother distributions of all types of two-parton correlation functions, generalized transverse momentum dependent parton distributions (GTMDs) have attracted a lot of attention over the last years. We argue that exclusive double production of pseudoscalar quarkonia ($eta_c$ or $eta_b$) in nucleon-nucleon collisions gives access to GTMDs of gluons.
The Drell-Yan process provides important information on the internal structure of hadrons including transverse momentum dependent parton distribution functions (TMDs). In this work we present calculations for all leading twist structure functions describing the pion induced Drell-Yan process. The non-perturbative input for the TMDs is taken from the light-front constituent quark model, the spectator model, and available parametrizations of TMDs extracted from the experimental data. TMD evolution is implemented at Next-to-Leading Logarithmic precision for the first time for all asymmetries. Our results are compatible with the first experimental information, help to interpret the data from ongoing experiments, and will allow one to quantitatively assess the models in future when more precise data will become available.
75 - Peter Kroll 2016
In this talk it is reported on analyses of l p -> l pi+ n and pi- p -> l+ l- n within the handbag approach. It is argued that recent measurements of hard pion production performed by HERMES and CLAS clearly indicate the occurrence of strong contributions from transversely polarized photons. The gamma*T -> pi transitions are described by the transversity GPDs accompanied by twist-3 pion wave functions. The experiments also require strong contributions from the pion pole which can be modeled as a classical one-pion exchange. With these extensions the handbag approach leads to results on cross sections and spin asymmetries in fair agreement with experiment. This approach is also used for an estimate of the partial cross sections for the exclusive Drell-Yan process.
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar. In addition to nuclear smearing corrections that are known to be important at large values of the nucleons parton momentum fraction x_N, we also consider dynamical off-shell nucleon corrections associated with the modifications of the bound nucleon structure inside the deuteron, which we find to be significant at intermediate and large x_N values. We also provide estimates of the nuclear corrections at kinematics corresponding to existing and planned Drell-Yan experiments at Fermilab and J-PARC which aim to determine the dbar/ubar ratio for x < 0.6.
In this paper we investigate consequences of an assumption that the discrepancy of the predicted and observed W+W- production cross sections at the LHC is caused by the missing contribution of the double Drell-Yan process (DDYP). Using our simple model of DDYP of Ref. [1] we show that inclusion of this production mechanism leads to a satisfactory, parameter-free description of the two-lepton mass distribution for 0-jet W+W- events and the four-lepton mass distribution for ZZ events. In such a scenario the Higgs-boson contribution is no longer necessary to describe the data. An experimental programme to prove or falsify such an assumption is proposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا