Being the mother distributions of all types of two-parton correlation functions, generalized transverse momentum dependent parton distributions (GTMDs) have attracted a lot of attention over the last years. We argue that exclusive double production of pseudoscalar quarkonia ($eta_c$ or $eta_b$) in nucleon-nucleon collisions gives access to GTMDs of gluons.
Generalized transverse momentum dependent parton distributions (GTMDs) are the most general parton correlation functions of hadrons. By considering the exclusive double Drell-Yan process it is shown for the first time how quark GTMDs can be measured. Specific GTMDs can be addressed by means of polarization observables.
In this contribution we briefly discuss an ongoing phenomenological programme on quarkonium production in unpolarized and polarized proton-proton collisions in a fixed target setup at LHCb, the LHCSpin project. Within a TMD approach, we aim at considering in particular: the relative role of the NRQCD color-singlet and color-octet production mechanisms, both for unpolarized and polarized quarkonium production; the study of azimuthal and transverse single-spin asymmetries as a phenomenological tool for learning about the almost unknown gluon Sivers function; the role of initial- and final-state interactions for spin asymmetries.
I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. $eta_b$) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the $q_T$ spectrum of $eta_b$ produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log (NNLL) and next-to-leading order (NLO) accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.
Forward photoproduction of $J/psi$ can be used to extract Generalized Parton Distributions(GPDs) of gluons. We analyze the process at twist-3 level and study relevant classifications of twist-3 gluon GPDs. At leading power or twist-2 level the produced $J/psi$ is transversely polarized. We find that at twist-3 the produced $J/psi$ is longitudinally polarized. Our study shows that in high energy limit the twist-3 amplitude is only suppressed by the inverse power of the heavy quark mass relatively to the twist-2 amplitude. This indicates that the power correction to the cross-section of unpolarized $J/psi$ can have a sizeable effect. We have also derived the amplitude of the production of $h_c$ at twist-3, but the result contains end-point singularities. The production of other quarkonia has been briefly discussed.
The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction {ep -> ep gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 > 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,e pgamma) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.