Do you want to publish a course? Click here

Methods for analysis of two-particle rapidity correlation function in high-energy heavy-ion collisions

46   0   0.0 ( 0 )
 Added by Ronghua He
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Two-particle rapidity (or pseudorapidity) correlation function $C(y_1, y_2)$ was used in analysing fluctuation of particle density distribution in rapidity in high-energy heavy-ion collisions. In our research, we argue that for a centrality window, some additional correlation may be caused by a centrality span, when the mean two- and single-particle densities over a centrality window are used directly in the calculation , just like $left<N(y_1, y_2) right> / left[left<N(y_1)right>left<N(y_2)right>right]$. We concentrate on removing the influence of collision-centrality span on correlation function, and two calculation methods are raised. In one method, correlation coefficients are considered to be the ratios of probabilities (not the particle density). In the other method, a relative multiplicity is introduced to unity the events of different centralities. For testing the methods, {sc ampt} model is used and a toy granular model is built to simulate the fluctuation of particle density in rapidity.



rate research

Read More

Using several source models, we analyze the transverse momentum dependence of HBT radii in the relativistic heavy-ion collisions. The results indicate that the single-particle space-momentum angle distribution plays an important role in the transverse momentum dependence of HBT radii. In a cylinder source, we use several formulas to describe the transverse momentum dependence of HBT radii and the single-particle space-momentum angle distribution. We also make a numerical connection between them in the transverse plane.
In central Au-Au collisions at top RHIC energy, two particle correlation measurements with identified hadron trigger have shown attenuation of near side proton triggered jet-like yield at intermediate transverse momentum ($p{_T}$), 2$< p{_T} <$ 6 GeV/$it{c}$. The attenuation has been attributed to the anomalous baryon enhancement observed in the single inclusive measurements at the same $p{_T}$ range. The enhancement has been found to be in agreement with the models invoking coalescence of quarks as a mechanism of hadronization. Baryon enhancement has also been observed at LHC in the single inclusive spectra. We study the consequence of such an enhancement on two particle correlations at LHC energy within the framework of A Multi Phase Transport (AMPT) model that implements quark coalescence as a mode of hadronization. In this paper we have calculated the proton over pion ratio and the near side per trigger yield associated to pion and proton triggers at intermediate $p{_T}$ from String Melting (SM) version of AMPT. Results obtained are contrasted with the AMPT Default (Def.) which does not include coalescence. Baryon enhancement has been observed in AMPT SM at intermediate $p{_T}$. Near side jet-like correlated yield associated to baryon (proton) trigger in the momentum region where baryon generation is enhanced is found to be suppressed as compared to the corresponding yields for the meson (pion) trigger in most central Pb-Pb events. No such effect has been found in the Default version of AMPT.
We use a geometric model for the hadron polarization with an emphasis on the rapidity dependence. It is based on the model of Brodsky, Gunion, and Kuhn and that of the Bjorken scaling. We make predictions for the rapidity dependence of the hadron polarization in the collision energy range 7.7-200 GeV by taking a few assumed forms of the parameters. The predictions can be tested by future experiments.
We present theoretical approaches to high energy nuclear collisions in detail putting a special emphasis on technical aspects of numerical simulations. Models include relativistic hydrodynamics, Monte-Carlo implementation of k_T-factorization formula, jet quenching in expanding fluids, a hadronic transport model and the Vlasov equation for colored particles.
The dynamical development of collective flow is studied in a (3+1)D fluid dynamical model, with globally symmetric, peripheral initial conditions, which take into account the shear flow caused by the forward motion on the projectile side and the backward motion on the target side. While at $sqrt{s_{NN}} = 2.76A$,TeV semi-peripheral Pb+Pb collisions the earlier predicted rotation effect is visible, at more peripheral collisions, with high resolution and low numerical viscosity the initial development of a Kelvin-Helmholtz instability is observed, which alters the flow pattern considerably. This effect provides a precision tool for studying the low viscosity of Quark-gluon Plasma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا