Do you want to publish a course? Click here

Kelvin-Helmholz instability in high energy heavy ion collisions

104   0   0.0 ( 0 )
 Added by Laszlo P. Csernai
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

The dynamical development of collective flow is studied in a (3+1)D fluid dynamical model, with globally symmetric, peripheral initial conditions, which take into account the shear flow caused by the forward motion on the projectile side and the backward motion on the target side. While at $sqrt{s_{NN}} = 2.76A$,TeV semi-peripheral Pb+Pb collisions the earlier predicted rotation effect is visible, at more peripheral collisions, with high resolution and low numerical viscosity the initial development of a Kelvin-Helmholtz instability is observed, which alters the flow pattern considerably. This effect provides a precision tool for studying the low viscosity of Quark-gluon Plasma.



rate research

Read More

We present theoretical approaches to high energy nuclear collisions in detail putting a special emphasis on technical aspects of numerical simulations. Models include relativistic hydrodynamics, Monte-Carlo implementation of k_T-factorization formula, jet quenching in expanding fluids, a hadronic transport model and the Vlasov equation for colored particles.
Recent advances in Fluid Dynamical modeling of heavy ion collisions are presented, with particular attention to mesoscopic systems, QGP formation in the pre FD regime and QGP hadronization coinciding with the final freeze-out.
65 - F. Becattini 2017
We study the polarization of particles in relativistic heavy-ion collisions at very high energy along the beam direction within a relativistic hydrodynamic framework. We show that this component of the polarization decreases much slower with center-of-mass energy compared to the transverse component, even in the ideal longitudinal boost-invariant scenario with non-fluctuating initial state, and that it can be measured by taking advantage of its quadrupole structure in the transverse momentum plane. In the ideal longitudinal boost-invariant scenario, the polarization is proportional to the gradient of temperature at the hadronization and its measurement can provide important information about the cooling rate of the Quark Gluon Plasma around the critical temperature.
The large values and the constituent-quark-number (NCQ) scaling of the elliptic flow of low-$p_T$ $D$ mesons imply that charm quarks, initially produced through hard processes, might be partially thermalized through the strong interactions with the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. To quantify the degree of thermalization of low-$p_T$ charm quarks, we compare the $D^0$ meson spectra and elliptic flow from a hydrodynamic model to the experimental data as well as transport model simulations. We use an effective charm chemical potential at the freeze-out temperature to account for the initial charm quark production from hard processes and assume that they are thermalized in local comoving frame of the medium before freeze-out. $D^0$ mesons are sampled statistically from the freeze-out hyper-surface of the expanding QGP as described by the event-by-event (3+1)D viscous hydrodynamic model CLVisc. Both hydrodynamic and transport model can describe the elliptic flow of $D^0$ mesons at $p_T<3$ GeV/$c$ as measured in Au+Au collisions at $sqrt{s_{NN}}=200$ GeV. Though the experimental data on $D^0$ spectra are consistent with the hydrodynamic result at small $p_Tsim 1$ GeV/$c$, they deviate from the hydrodynamic model at high transverse momentum $p_T>2$ GeV/$c$. The diffusion and parton energy loss mechanisms in the transport model can describe the measured spectra reasonably well within the theoretical uncertainty. Our comparative study indicates that charm quarks only approach to local thermal equilibrium at small $p_T$ even though they acquire sizable elliptic flow that is comparable to light-quark hadrons at both small and intermediate $p_T$.
Within the framework of quantum molecular dynamics transport model, the isospin and in-medium effects on the hyperon production in the reaction of $^{197}$Au + $^{197}$Au are investigated thoroughly. A repulsive hyperon-nucleon potential from the chiral effective field theory is implemented into the model, which is related to the hyperon momentum and baryon density. The correction on threshold energy of the elementary hyperon cross section is taken into account. It is found that the $Sigma$ yields are suppressed in the domain of midrapidity and kinetic energy spectra with the potential. The hyperons are emitted in the reaction plane because of the strangeness exchange reaction and reabsorption process in nuclear medium. The $Sigma^{-}/Sigma^{+}$ ratio depends on the stiffness of nuclear symmetry energy, in particular in the high-energy region (above 500 MeV).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا