No Arabic abstract
We show that every smooth Schubert variety of affine type $tilde{A}$ is an iterated fibre bundle of Grassmannians, extending an analogous result by Ryan and Wolper for Schubert varieties of finite type $A$. As a consequence, we finish a conjecture of Billey-Crites that a Schubert variety in affine type $tilde{A}$ is smooth if and only if the corresponding affine permutation avoids the patterns $4231$ and $3412$. Using this iterated fibre bundle structure, we compute the generating function for the number of smooth Schubert varieties of affine type $tilde{A}$.
We prove the affine Pieri rule for the cohomology of the affine flag variety conjectured by Lam, Lapointe, Morse and Shimozono. We study the cap operator on the affine nilHecke ring that is motivated by Kostant and Kumars work on the equivariant cohomology of the affine flag variety. We show that the cap operators for Pieri elements are the same as Pieri operators defined by Berg, Saliola and Serrano. This establishes the affine Pieri rule.
We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigate the combinatorics of affine Schubert calculus for type $A$. We introduce Murnaghan-Nakayama elements and Dunkl elements in the affine FK algebra. We show that they are commutative as Bruhat operators, and the commutative algebra generated by these operators is isomorphic to the cohomology of the affine flag variety. We show that the cohomology of the affine flag variety is product of the cohomology of an affine Grassmannian and a flag variety, which are generated by MN elements and Dunkl elements respectively. The Schubert classes in cohomology of the affine Grassmannian (resp. the flag variety) can be identified with affine Schur functions (resp. Schubert polynomials) in a quotient of the polynomial ring. Affine Schubert polynomials, polynomial representatives of the Schubert class in the cohomology of the affine flag variety, can be defined in the product of two quotient rings using the Bernstein-Gelfand-Gelfand operators interpreted as divided difference operators acting on the affine Fomin-Kirillov algebra. As for other applications, we obtain Murnaghan-Nakayama rules both for the affine Schubert polynomials and affine Stanley symmetric functions. We also define $k$-strong-ribbon tableaux from Murnaghan-Nakayama elements to provide a new formula of $k$-Schur functions. This formula gives the character table of the representation of the symmetric group whose Frobenius characteristic image is the $k$-Schur function.
We enumerate smooth and rationally smooth Schubert varieties in the classical finite types A, B, C, and D, extending Haimans enumeration for type A. To do this enumeration, we introduce a notion of staircase diagrams on a graph. These combinatorial structures are collections of steps of irregular size, forming interconnected staircases over the given graph. Over a Dynkin-Coxeter graph, the set of nearly-maximally labelled staircase diagrams is in bijection with the set of Schubert varieties with a complete Billey-Postnikov (BP) decomposition. We can then use an earlier result of the authors showing that all finite-type rationally smooth Schubert varieties have a complete BP decomposition to finish the enumeration.
The cohomology of the affine flag variety of a complex reductive group is a comodule over the cohomology of the affine Grassmannian. We give positive formulae for the coproduct of an affine Schubert class in terms of affine Stanley classes and finite Schubert classes, in (torus-equivariant) cohomology and K-theory. As an application, we deduce monomial positivity for the affine Schubert polynomials of the second author.
We discuss a relationship between Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds, Fomin-Kirillov algebra, and the generalized nil-Hecke algebra. We show that nonnegativity conjecture in Fomin-Kirillov algebra implies the nonnegativity of the Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds for type A. Motivated by this connection, we also prove that the (equivariant) Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds are certain summations of the structure constants of the equivariant cohomology of the Bott-Samelson varieties. We also discuss the refined positivity conjectures of the Chern-Schwartz-MacPherson classes for Schubert cells motivated by the nonnegativity conjecture in Fomin-Kirillov algebra.