No Arabic abstract
We discuss a relationship between Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds, Fomin-Kirillov algebra, and the generalized nil-Hecke algebra. We show that nonnegativity conjecture in Fomin-Kirillov algebra implies the nonnegativity of the Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds for type A. Motivated by this connection, we also prove that the (equivariant) Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds are certain summations of the structure constants of the equivariant cohomology of the Bott-Samelson varieties. We also discuss the refined positivity conjectures of the Chern-Schwartz-MacPherson classes for Schubert cells motivated by the nonnegativity conjecture in Fomin-Kirillov algebra.
We show that every smooth Schubert variety of affine type $tilde{A}$ is an iterated fibre bundle of Grassmannians, extending an analogous result by Ryan and Wolper for Schubert varieties of finite type $A$. As a consequence, we finish a conjecture of Billey-Crites that a Schubert variety in affine type $tilde{A}$ is smooth if and only if the corresponding affine permutation avoids the patterns $4231$ and $3412$. Using this iterated fibre bundle structure, we compute the generating function for the number of smooth Schubert varieties of affine type $tilde{A}$.
The aim of this paper is to study the representation theory of quantum Schubert cells. Let $g$ be a simple complex Lie algebra. To each element $w$ of the Weyl group $W$ of $g$, De Concini, Kac and Procesi have attached a subalgebra $U_q[w]$ of the quantised enveloping algebra $U_q(g)$. Recently, Yakimov showed that these algebras can be interpreted as the quantum Schubert cells on quantum flag manifolds. In this paper, we study the primitive ideals of $U_q[w]$. More precisely, it follows from the Stratification Theorem of Goodearl and Letzter that the primitive spectrum of $U_q[w]$ admits a stratification indexed by those primes that are invariant under a natural torus action. Moreover each stratum is homeomorphic to the spectrum of maximal ideals of a torus. The main result of this paper gives an explicit formula for the dimension of the stratum associated to a given torus-invariant prime.
We develop a combinatorial rule to compute the real geometry of type B Schubert curves $S(lambda_bullet)$ in the orthogonal Grassmannian $mathrm{OG}_n$, which are one-dimensional Schubert problems defined with respect to orthogonal flags osculating the rational normal curve. Our results are natural analogs of results previously known only in type A. First, using the type B Wronski map, we show that the real locus of the Schubert curve has a natural covering map to $mathbb{RP}^1$, with monodromy operator $omega$ defined as the commutator of jeu de taquin rectification and promotion on skew shifted semistandard tableaux. We then introduce two different algorithms to compute $omega$ without rectifying the skew tableau. The first uses recently-developed shifted tableau crystal operators, while the second uses local switches much like jeu de taquin. The switching algorithm further computes the K-theory coefficient of the Schubert curve: its nonadjacent switches precisely enumerate Pechenik and Yongs shifted genomic tableaux. The connection to K-theory also gives rise to a partial understanding of the complex geometry of these curves.
We define degeneracy loci for vector bundles with structure group $G_2$, and give formulas for their cohomology (or Chow) classes in terms of the Chern classes of the bundles involved. When the base is a point, such formulas are part of the theory for rational homogeneous spaces developed by Bernstein-Gelfand-Gelfand and Demazure. This has been extended to the setting of general algebraic geometry by Giambelli-Thom-Porteous, Kempf-Laksov, and Fulton in classical types; the present work carries out the analogous program in type $G_2$. We include explicit descriptions of the $G_2$ flag variety and its Schubert varieties, and several computations, including one that answers a question of W. Graham. In appendices, we collect some facts from representation theory and compute the Chow rings of quadric bundles, clarifying a previous computation of Edidin and Graham.