Do you want to publish a course? Click here

Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements

91   0   0.0 ( 0 )
 Added by Hailu Luo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre- Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.



rate research

Read More

The working principle of ordinary refractive lenses can be explained in terms of the space-variant optical phase retardations they introduce, which reshape the optical wavefront curvature and hence affect the subsequent light propagation. These phases, in turn, are due to the varying optical path length seen by light at different transverse positions relative to the lens centre. A similar lensing behavior can however be obtained when the optical phases are introduced by an entirely different mechanism. Here, we consider the geometric phases that arise from the polarization transformations occurring in anisotropic optical media, named after Pancharatnam and Berry. The medium anisotropy axis is taken to be space-variant in the transverse plane and the resulting varying geometric phases give rise to the wavefront reshaping and lensing effect, which however depends also on the input polarization. We describe the realization and characterization of a cylindrical geometric-phase lens that is converging for a given input circular polarization state and diverging for the orthogonal one, which provides one of the simplest possible examples of optical element based on geometric phases. The demonstrated lens is flat and only few microns thick (not including the supporting substrates); moreover, its working wavelength can be tuned and the lensing can be switched on and off by the action of an external control electric field. Other kinds of lenses or more general phase elements inducing different wavefront distortions can be obtained by a similar approach. Besides their potential for optoelectronic technology, these devices offer good opportunities for introducing college-level students to an advanced topic of modern physics, such as the Berry phase, with the help of interesting optical demonstrations.
Vector vortex beams have played a fundamental role in the better understanding of coherence and polarization. They are described by spatially inhomogeneous polarization states, which present a rich optical mode structure that has attracted much attention for applications in optical communications, imaging, spectroscopy and metrology. However, this complex mode structure can be quite detrimental when propagation effects such as turbulence and birefringence perturb the beam. Optical phase conjugation has been proposed as a method to recover an optical beam from perturbations. Here we demonstrate full phase conjugation of vector vortex beams using three-wave mixing. Our scheme exploits a fast non-linear process that can be conveniently controlled via the pump beam. Our results pave the way for sophisticated, practical applications of vector beams.
Harnessing the spontaneous emission of incoherent quantum emitters is one of the hallmarks of nano-optics. Yet, an enduring challenge remains-making them emit vector beams, which are complex forms of light associated with fruitful developments in fluorescence imaging, optical trapping and high-speed telecommunications. Vector beams are characterized by spatially varying polarization states whose construction requires coherence properties that are typically possessed by lasers-but not by photons produced by spontaneous emission. Here, we show a route to weave the spontaneous emission of an ensemble of colloidal quantum dots into vector beams. To this end, we use holographic nanostructures that impart the necessary spatial coherence, polarization and topological properties to the light originating from the emitters. We focus our demonstration on vector vortex beams, which are chiral vector beams carrying non-zero orbital angular momentum, and argue that our approach can be extended to other forms of vectorial light.
We discuss the propagation of an electromagnetic field in an inhomogeneously anisotropic material where the optic axis is rotated in the transverse plane but is invariant along the propagation direction. In such a configuration, the evolution of an electromagnetic wavepacket is governed by the Pancharatnam-Berry phase (PBP), responsible for the appearance of an effective photonic potential. In a recent paper [A. Alberucci et al., Electromagnetic confinement via spin-orbit interaction in anisotropic dielectrics, ACS Photonics textbf{3}, 2249 (2016)] we demonstrated that the effective potential supports transverse confinement. Here we find the profile of the quasi-modes and show that the photonic potential arises from the Kapitza effect of light. The theoretical results are confirmed by numerical simulations, accounting for the medium birefringence. Finally, we analyze in detail a configuration able to support non-leaky guided modes.
We report a novel experimental scheme for single-pass second harmonic generation (SHG) of vector vortex beam in the blue. Using an ultrafast Ti:Sapphire laser of pulse width ~17 fs and a set of spiral phase plates in polarization based Mach-Zehnder interferometer (MZI) we have generated vector vortex beams of order as high as lp = 12 at an average power of 860 mW. Given the space-variant polarization of the vector vortex beam, and the dependence of nonlinear frequency conversion processes on the polarization of the interacting beams, using two contiguous bismuth borate crystals with optic axis orthogonal to each other, we have frequency-doubled the near-IR vector vortex beam into visible vector vortex beams with order as high as lsh=24. The maximum output power of the vector vortex beam of order, lsh =2 is measured be as high as 20.5 mW at a single-pass SHG efficiency of 2.4 %. Controlling the temporal delay in the MZI, we have preserved the vector vortex nature of the beams at both pump and frequency-doubled beams at ultrafast timescales. The measurement on mode purity confirms the generation of high quality vector vortex beams at pump and SHG wavelengths. The generic experimental scheme can be used to generate vector vortex beams across the electromagnetic spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا