No Arabic abstract
AOLI (Adaptive Optics Lucky Imager) is a state-of-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new TP3-WFS (Two Pupil Plane Positions Wavefront Sensor). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS (SH-WFS) because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time adaptive optics corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope (WHT).
In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120x120 down to 36x36 arcseconds field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars ({it I/} $sim$ 16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151$pm$0.005 arcsec and a plate scale of 55.0$pm$0.3 mas/pixel. Those observations served us to prove some characteristics of the interesting multiple T Tauri system LkH$alpha$ 262-263, finding it to be gravitationally bounded. This interesting multiple system mixes the presence of proto-planetary discs, one proved to be double, and the first-time optically resolved pair LkH$alpha$ 263AB (0.42 arcsec separation).
In this paper we present HighRes: a laboratory demonstration of a 3U CubeSat with a deployable primary mirror that has the potential of achieving high-resolution imaging for Earth Observation. The system is based on a Cassegrain telescope with a segmented primary mirror composed of 4 petals that form an effective aperture of 300 mm. The design provides diffraction limited performance over the entire field-of-view and allows for a panchromatic ground-sampling distance of less than 1 m at an altitude of 350 km. The alignment and co-phasing of the mirror segments is performed by focal plane sharpening and is validated through rigorous numerical simulations. The opto-mechanical design of the prototype and its laboratory demonstration are described and measurements from the on-board metrology sensors are presented. This data verifies that the performance of the mirror deployment and manipulation systems is sufficient for co-phasing. In addition, it is shown that the mirrors can be driven to any target position with an accuracy of 25 nm using closed-loop feedback between the mirror motors and the on-board metrology.
The highest resolution images ever taken in the visible were obtained by combining Lucky Imaging and low order adaptive optics. This paper describes a new instrument to be deployed on the WHT 4.2m and GTC 10.4 m telescopes on La Palma, with particular emphasis on the optical design and the expected system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow dramatically fainter reference stars to be used, allowing virtually full sky coverage with a natural guide star. This paper also describes a significant improvements in the efficiency of Lucky Imaging, important advances in wavefront reconstruction with curvature sensors and the results of simulations and sensitivity limits. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is likely to be the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics facility for the 5.1-m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ~ 17. Using its unique 66 x 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm RMS under 1 arcsecond seeing conditions. PALM-3000 can provide phase conjugation correction over a 6.4 x 6.4 arcsecond working region at an observing wavelength of 2.2 microns, or full electric field (amplitude and phase) correction over approximately one half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable as high as 10e-7 contrast at ~1 arc second angular separation, after including post-observation speckle suppression processing. While optimization of the adaptive optics system is ongoing, we have already successfully commissioned five back-end science instruments and begun a major exoplanet characterization survey, Project 1640, with our partners at American Museum of Natural History and Jet Propulsion Laboratory.
We present a multi-conjugate adaptive optics (MCAO) system simulator bench, HeNOS (Herzberg NFIRAOS Optical Simulator). HeNOS is developed to validate the performance of the MCAO system for the Thirty Meter Telescope, as well as to demonstrate techniques critical for future AO developments. In this paper, we focus on describing the derivations of parameters that scale the 30-m telescope AO system down to a bench experiment and explain how these parameters are practically implemented on an optical bench. While referring other papers for details of AO technique developments using HeNOS, we introduce the functionality of HeNOS, in particular, three different single-conjugate AO modes that HeNOS currently offers: a laser guide star AO with a Shack-Hartmann wavefront sensor, a natural guide star AO with a pyramid wavefront sensor, and a laser guide star AO with a sodium spot elongation on the Shack-Hartmann corrected by a truth wavefront sensing on a natural guide star. Laser tomography AO and ultimate MCAO are being prepared to be implemented in the near future.