Do you want to publish a course? Click here

Kinetically constrained lattice gases: tagged particle diffusion

64   0   0.0 ( 0 )
 Added by Oriane Blondel
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kinetically constrained lattice gases (KCLG) are interacting particle systems on the integer lattice $mathbb Z^d$ with hard core exclusion and Kawasaki type dynamics. Their peculiarity is that jumps are allowed only if the configuration satisfies a constraint which asks for enough empty sites in a certain local neighborhood. KCLG have been introduced and extensively studied in physics literature as models of glassy dynamics. We focus on the most studied class of KCLG, the Kob Andersen (KA) models. We analyze the behavior of a tracer (i.e. a tagged particle) at equilibrium. We prove that for all dimensions $dgeq 2$ and for any equilibrium particle density, under diffusive rescaling the motion of the tracer converges to a $d$-dimensional Brownian motion with non-degenerate diffusion matrix. Therefore we disprove the occurrence of a diffusive/non diffusive transition which had been conjectured in physics literature. Our technique is flexible enough and can be extended to analyse the tracer behavior for other choices of constraints.



rate research

Read More

A hierarchy of timescales is ubiquitous in biological systems, where enzymatic reactions play an important role because they can hasten the relaxation to equilibrium. We introduced a statistical physics model of interacting spins that also incorporates enzymatic reactions to extend the classic model for allosteric regulation. Through Monte Carlo simulations, we found that the relaxation dynamics are much slower than the elementary reactions and are logarithmic in time with several plateaus, as is commonly observed for glasses. This is because of the kinetic constraints from the cooperativity via the competition for an enzyme, which has different affinity for molecules with different structures. Our model showed symmetry breaking in the relaxation trajectories that led to inherently kinetic transitions without any correspondence to the equilibrium state. In this paper, we discuss the relevance of these results for diverse responses in biology.
We study lattice gas systems on the honeycomb lattice where particles exclude neighboring sites up to order $k$ ($k=1ldots5$) from being occupied by another particle. Monte Carlo simulations were used to obtain phase diagrams and characterize phase transitions as the system orders at high packing fractions. For systems with first neighbors exclusion (1NN), we confirm previous results suggesting a continuous transition in the 2D-Ising universality class. Exclusion up to second neighbors (2NN) lead the system to a two-step melting process where, first, a high density columnar phase undergoes a first order phase transition with non-standard scaling to a solid-like phase with short range ordered domains and, then, to fluid-like configurations with no sign of a second phase transition. 3NN exclusion, surprisingly, shows no phase transition to an ordered phase as density is increased, staying disordered even to packing fractions up to 0.98. The 4NN model undergoes a continuous phase transition with critical exponents close to the 3-state Potts model. The 5NN system undergoes two first order phase transitions, both with non-standard scaling. We, also, propose a conjecture concerning the possibility of more than one phase transition for systems with exclusion regions further than 5NN based on geometrical aspects of symmetries.
We consider one component lattice gases with a local dynamics and a stationary product Bernoulli measure. We give upper and lower bounds on the diffusivity at an equilibrium point depending on the dimension and the local behavior of the macroscopic flux function. We show that if the model is expected to be diffusive, it is indeed diffusive, and, if it is expected to be superdiffusive, it is indeed superdiffusive.
We study a stochastic lattice gas of particles in one dimension with strictly finite-range interactions that respect the fracton-like conservation laws of total charge and dipole moment. As the charge density is varied, the connectivity of the systems charge configurations under the dynamics changes qualitatively. We find two distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging to a single dynamically connected sector. As the charge density is tuned away from half filling there is a phase transition to a frozen phase where locally active finite bubbles cannot exchange particles and the system fails to thermalize. The two phases exemplify what has recently been referred to as weak and strong Hilbert space fragmentation, respectively. We study the static and dynamic scaling properties of this weak-to-strong fragmentation phase transition in a kinetically constrained classical Markov circuit model, obtaining some conjectured exact critical exponents.
We report on the translation and rotation of particle clusters made through the combination of spherical building blocks. These clusters present ideal model systems to study the motion of objects with complex shape. Because they could be separated into fractions of well-defined configurations on a sufficient scale and their overall dimensions were below 300 nm, the translational and rotational diffusion coefficients of particle duplets, triplets and tetrahedrons could be determined by a combination of polarized dynamic light scattering (DLS) and depolarized dynamic light scattering (DDLS). The use of colloidal clusters for DDLS experiments overcomes the limitation of earlier experiments on the diffusion of complex objects near surfaces because the true 3D diffusion can be studied. When the exact geometry of the complex assemblies is known, different hydrodynamic models for calculating the diffusion coefficient for objects with complex shapes could be applied. Because hydrodynamic friction must be restricted to the cluster surface the so-called shell model, in which the surface is represented as a shell of small friction elements, was most suitable to describe the dynamics. A quantitative comparison of the predictions from theoretical modeling with the results obtained by DDLS showed an excellent agreement between experiment and theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا