Do you want to publish a course? Click here

Phase Transitions in Hardcore Lattice Gases on the Honeycomb Lattice

85   0   0.0 ( 0 )
 Added by Heitor Fernandes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study lattice gas systems on the honeycomb lattice where particles exclude neighboring sites up to order $k$ ($k=1ldots5$) from being occupied by another particle. Monte Carlo simulations were used to obtain phase diagrams and characterize phase transitions as the system orders at high packing fractions. For systems with first neighbors exclusion (1NN), we confirm previous results suggesting a continuous transition in the 2D-Ising universality class. Exclusion up to second neighbors (2NN) lead the system to a two-step melting process where, first, a high density columnar phase undergoes a first order phase transition with non-standard scaling to a solid-like phase with short range ordered domains and, then, to fluid-like configurations with no sign of a second phase transition. 3NN exclusion, surprisingly, shows no phase transition to an ordered phase as density is increased, staying disordered even to packing fractions up to 0.98. The 4NN model undergoes a continuous phase transition with critical exponents close to the 3-state Potts model. The 5NN system undergoes two first order phase transitions, both with non-standard scaling. We, also, propose a conjecture concerning the possibility of more than one phase transition for systems with exclusion regions further than 5NN based on geometrical aspects of symmetries.



rate research

Read More

We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.
Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermions interact with effective non-Abelian gauge fields. We show how in this setup a variety of topological phase transitions occur, which arise due to massless fermion pair production events, as well as pair annihilation events of two kinds: spontaneous and strongly-interacting induced. Moreover, such phase transitions can be controlled and characterized in optical lattice experiments.
144 - K. Seki , Y. Ohta 2012
Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreement with a recent large-scale quantum Monte Carlo simulation. Calculated staggered magnetization increases continuously with $U$ and thus we find the phase transition is of a second order. We also find that the semimetal-insulator transition occurs at infinitesimally small interaction and thus a paramagnetic insulating state appears in a wide interaction range. A crossover behavior of electrons from itinerant to localized character found in the calculated single-particle excitation spectra and short-range spin correlation functions indicates that an effective spin model for the paramagnetic insulating phase is far from a simple Heisenberg model with a nearest-neighbor exchange interaction.
We consider the spin-1/2 antiferromagnetic Heisenberg model on a bilayer honeycomb lattice including interlayer frustration in the presence of an external magnetic field. In the vicinity of the saturation field, we map the low-energy states of this quantum system onto the spatial configurations of hard hexagons on a honeycomb lattice. As a result, we can construct effective classical models (lattice-gas as well as Ising models) on the honeycomb lattice to calculate the properties of the frustrated quantum Heisenberg spin system in the low-temperature regime. We perform classical Monte Carlo simulations for a hard-hexagon model and adopt known results for an Ising model to discuss the finite-temperature order-disorder phase transition that is driven by a magnetic field at low temperatures. We also discuss an effective-model description around the ideal frustration case and find indications for a spin-flop like transition in the considered isotropic spin model.
We consider the $(2+1)$-d $SU(2)$ quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the $mathbb{Z}(2)$ center of the $SU(2)$ gauge group) are confined to each other by fractionalized strings with a delocalized $mathbb{Z}(2)$ flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا