Do you want to publish a course? Click here

Exploiting ITO colloidal nanocrystals for ultrafast pulse generation

83   0   0.0 ( 0 )
 Added by Qiangbing Guo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamical materials that capable of responding to optical stimuli have always been pursued for designing novel photonic devices and functionalities, of which the response speed and amplitude as well as integration adaptability and energy effectiveness are especially critical. Here we show ultrafast pulse generation by exploiting the ultrafast and sensitive nonlinear dynamical processes in tunably solution-processed colloidal epsilon-near-zero (ENZ) transparent conducting oxide (TCO) nanocrystals (NCs), of which the potential respond response speed is >2 THz and modulation depth is ~23% pumped at ~0.7 mJ/cm2, benefiting from the highly confined geometry in addition to the ENZ enhancement effect. These ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices.



rate research

Read More

Images of semiconductor `dot in rods and their small clusters are studied by measuring the second-order correlation function with a spatially resolving ICCD camera. This measurement allows one to distinguish between a single dot and a cluster and, to a certain extent, to estimate the number of dots in a cluster. A more advanced measurement is proposed, based on higher-order correlations, enabling more accurate determination of the number of dots in a small cluster. Nonclassical features of the light emitted by such a cluster are analyzed.
We investigate the potential of elastic scattering of energetic ions for compositional analysis of magnetic colloidal nanocrystals. Thin layers of nanocrystals deposited by spin coating on Si-wafers are investigated by two different set-ups for Rutherford Backscattering Spectrometry (RBS), employing different projectile ions (4He, 12C) and primary energies (600 keV - 8 MeV). The advantages and disadvantages of the different approaches are discussed in terms of obtainable mass resolution, necessary primary particle fluence and deposited energy. It is shown that different isotopes of transition metals can be resolved by employing 8 MeV 12C3+ primary ions.
Elevated-temperature polyol-based colloidal-chemistry approach allows for the development of size-tunable (50 and 86 nm) assemblies of maghemite iso-oriented nanocrystals, with enhanced magnetization. 1H-Nuclear Magnetic Resonance (NMR) relaxometric experiments show that the ferrimagnetic cluster-like colloidal entities exhibit a remarkable enhancement (4 to 5 times) in the transverse relaxivity, if compared to that of the superparamagnetic contrast agent Endorem, over an extended frequency range (1-60 MHz). The marked increase of the transverse relaxivity r2 at a clinical magnetic field strength (1.41 T), which is 405.1 and 508.3 mM-1 s-1 for small and large assemblies respectively, allows to relate the observed response to the raised intra-aggregate magnetic material volume fraction. Furthermore, cell tests with murine fibroblast culture medium confirmed the cell viability in presence of the clusters. We discuss the NMR dispersion profiles on the basis of relaxivity models to highlight the magneto-structural characteristics of the materials for improved T2-weighted magnetic resonance images.
Spontaneous polarization is essential for ferroelectric functionality in non-centrosymmetric crystals. High-integration-density ferroelectric devices require the stabilization of ferroelectric polarization in small volumes. Here, atomic-resolution transmission electron microscopy imaging reveals that twinning-induced symmetry breaking in colloidal nanocrystals of centrosymmetric HfO2 leads to the formation of multiple polarization orders, which are associated with sub-nanometer ferroelectric and antiferroelectric phases. The minimum size limit of the ferroelectric phase is found to be ~4 nm3. Density functional theory calculations indicate that transformations between the ferroelectric and antiferroelectric phases can be modulated by lattice strain and are energetically possible in either direction. The results of this work provide a route towards applications of HfO2 nanocrystals in information storage at densities that are more than an order of magnitude higher than the scaling limit defined by the nanocrystal size.
Black phosphorus has been recently rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of black phosphorus thin films, indicating that both linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness. Then we employ the nonlinear optical property of black phosphorus for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 {mu}m. Our results underscore relatively large optical nonlinearity in black phosphorus and its prospective for ultrafast pulse generation, paving the way to black phosphorus based nonlinear and ultrafast photonics applications (e.g., ultrafast all-optical switches/modulators, frequency converters etc.).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا