Do you want to publish a course? Click here

Quartic time-dependent oscillatons

57   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we will study some properties of oscillaton, spherically symmetric object made of a real time-dependent scalar field, Using a self- interaction quartic scalar potential instead of a quadratic or exponential ones discussed in previous works. Since the oscillatons can be regarded as models for astrophysical objects which play the role of dark matter, there- fore investigation of their properties has more importance place in present time of physics; research. Therefore we investigate the properties of these objects by Solving the system of differential equations obtained from the Einstein Klein Gordon (EKG) equations and will show their importance as new candidates for the role of dark matter in the galactic scales.



rate research

Read More

We solve numerically the Einstein-Klein-Gordon system with spherical symmetry, for a massive real scalar field endowed with a quartic self-interaction potential, and obtain the so-called $Phi^4$-oscillatons which is the short name for oscillating soliton stars. We analyze numerically the stability of such oscillatons, and study the influence of the quartic potential on the behavior of both, the stable (S-oscillatons) and unstable (U-oscillatons) cases under small and strong radial perturbations.
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill in this omission by ruling out the existence of stationary black hole solutions even when the scalar field may have time dependence. Our proof is fairly general, and in particular applies to non-canonical scalar fields and certain non-asymptotically flat spacetimes. It also does not rely upon the spacetime being a black hole.
The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling to gravity arising in beyond-generalized Proca theories, the speed of gravitational waves $c_t$ on the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological background can be equal to that of light $c$ under a certain condition. By using this condition alone, we show that the speed of gravitational waves in the vicinity of static and spherically symmetric black holes is also equivalent to $c$ for the propagation of odd-parity perturbations along both radial and angular directions. As a by-product, the black holes arising in our beyond-generalized Proca theories are plagued by neither ghost nor Laplacian instabilities against odd-parity perturbations. We show the existence of both exact and numerical black hole solutions endowed with vector hairs induced by the quartic-order coupling.
In a Quantum Field Theory with a time-dependent background, time-translational symmetry is broken. We therefore expect time-dependent loop corrections to cosmological observables after renormalization for an interacting field, with the consequent physical implications. In this paper we compute and discuss such radiative corrections to the primordial spectrum within simple models, both for massless and massive virtual fields, and we disentangle the time-dependence caused by the background and by the initial state after renormalization. For the investigated models the departure from near-scale-invariance is very small and there is full compatibility with the current Planck data constraints. Future CMB measurements may improve the current constraints on feature-full primordial spectra and possibly observe these effects in the most optimistic scenario of hybrid inflation, revealing the interacting nature of the inflaton field.
We study the emission of large-scales wavelength space-time waves during the inflationary expansion of the universe, produced by back-reaction effects. As an example, we study an inflationary model with variable time scale, where the scale factor of the universe grows as a power of time. The coarse-grained field to describe space-time waves is defined by using the Levy distribution, on the wavenumber space. The evolution for the norm of these waves on cosmological scales is calculated, and it is shown that decreases with time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا