Do you want to publish a course? Click here

Stationary Black Holes with Time-Dependent Scalar Fields

153   0   0.0 ( 0 )
 Added by Alexander Graham
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill in this omission by ruling out the existence of stationary black hole solutions even when the scalar field may have time dependence. Our proof is fairly general, and in particular applies to non-canonical scalar fields and certain non-asymptotically flat spacetimes. It also does not rely upon the spacetime being a black hole.



rate research

Read More

In 1981 Wyman classified the solutions of the Einstein--Klein--Gordon equations with static spherically symmetric spacetime metric and vanishing scalar potential. For one of these classes, the scalar field linearly grows with time. We generalize this symmetry noninheriting solution, perturbatively, to a rotating one and extend the static solution exactly to arbitrary spacetime dimensions. Furthermore, we investigate the existence of nonminimally coupled, time-dependent real scalar fields on top of static black holes, and prove a no-hair theorem for stealth scalar fields on the Schwarzschild background.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetric solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
Scalar fields around compact objects are of interest for scalar-tensor theories of gravity and dark matter models consisting of a massive scalar, e.g. axions. We study the behaviour of a scalar field around a Kerr black hole with non trivial asymptotic boundary conditions - both non zero density and non zero angular momentum. Starting from an initial radially homogeneous configuration, a scalar cloud is accreted, which asymptotes to known stationary configurations over time. We study the cloud growth for different parameters including black hole spin, scalar field mass, and the scalar field density and angular momentum far from the black hole. We characterise the transient growth of the mass and angular momentum in the cloud, and the spatial profile of the scalar around the black hole, and relate the results of fully non-linear simulations to an analytic perturbative expansion. We also highlight the potential for these accreted clouds to create monochromatic gravitational wave signals - similar to the signals from superradiant clouds, although significantly weaker in amplitude.
Searching for violations of the no-hair theorem (NHT) is a powerful way to test gravity, and more generally fundamental physics, particularly with regards to the existence of additional scalar fields. The first observation of a black hole (BH) shadow by the Event Horizon Telescope (EHT) has opened a new direct window onto tests of gravity in the strong-field regime, including probes of violations of the NHT. We consider two scenarios described by the Einstein-Maxwell equations of General Relativity and electromagnetism, to which we add a scalar field. In the first case we consider a minimally-coupled scalar field with a potential, whereas in the second case the field is conformally-coupled to curvature. In both scenarios we construct charged BH solutions, which are found to carry primary scalar hair. We then compute the shadows cast by these two BHs as a function of their electric charge and scalar hair parameter. Comparing these shadows to the shadow of M87* recently imaged by the EHT collaboration, we set constraints on the amount of scalar hair carried by these two BHs. The conformally-coupled case admits a regime for the hair parameter, compatible with EHT constraints, describing a so-called mutated Reissner-Nordstr{o}m BH: this solution was recently found to effectively mimic a wormhole. Our work provides novel constraints on fundamental physics, and in particular on violations of the no-hair theorem and the existence of additional scalar fields, from the shadow of M87*.
The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordstrom situation. For a distant observer the {horizon} crossing occurs in an infinite time and the pulsations of the black hole quantum beating heart are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا