Do you want to publish a course? Click here

Direct Mapping of Spin and Orbital Entangled Wavefunction under Interband Spin-Orbit coupling of Rashba Spin-Split Surface States

79   0   0.0 ( 0 )
 Added by Kenta Kuroda
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin-splitting, the different orbital and spin parts of the surface wavefucntion are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin-polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridyzation proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p- and s-polarized light.



rate research

Read More

We consider the Higgs mode at nonzero momentum in superconductors and demonstrate that in the presence of Rashba spin-orbit coupling, it couples linearly with an external exchange field. The Higgs-spin coupling dramatically modifies the spin susceptibility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon-induced voltage generated by the inverse spin Hall effect.
A comprehensive mapping of the spin polarization of the electronic bands in ferroelectric a-GeTe(111) films has been performed using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10.000 data points (voxels). A Rashba type splitting of both surface and bulk bands with opposite spin helicity of the inner and outer Rashba bands is found revealing a complex spin texture at the Fermi energy. The switchable inner electric field of GeTe implies new functionalities for spintronic devices.
83 - Peng Zhang , J.-Z. Ma , Y. Ishida 2016
We discover a pair of spin-polarized surface bands on the (111) face of grey arsenic by using angle-resolved photoemission spectroscopy (ARPES). In the occupied side, the pair resembles typical nearly-free-electron Shockley states observed on noble-metal surfaces. However, pump-probe ARPES reveals that the spin-polarized pair traverses the bulk band gap and that the crossing of the pair at $barGamma$ is topologically unavoidable. First-principles calculations well reproduce the bands and their non-trivial topology; the calculations also support that the surface states are of Shockley type because they arise from a band inversion caused by crystal field. The results provide compelling evidence that topological Shockley states are realized on As(111).
Within density functional theory, we study bulk band structure and surface states of BiTeBr. We consider both ordered and disordered phases which differ in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio calculations, we show that the ordered BiTeBr is energetically preferable as compared with the disordered one. We demonstrate that both Te- and Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant spin-orbit splitting. The Te-terminated surface-state spin splitting has the Rashba-type behavior with the coupling parameter alpha_R ~ 2 eVAA.
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise solely due to interfacial spin-orbit coupling, namely Rashba-Eldestein effects at metal/insulator interfaces. In magnetically soft NiFe sandwiched between a weak spin-orbit metal (Ti) and insulator (Al$_2$O$_3$), this torque appears as an effective field, which is significantly larger than the Oersted field and sensitive to insertion of an additional layer between NiFe and Al$_2$O$_3$. Our findings point to new routes for tuning spin-orbit torques by engineering interfacial electric dipoles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا