We discover a pair of spin-polarized surface bands on the (111) face of grey arsenic by using angle-resolved photoemission spectroscopy (ARPES). In the occupied side, the pair resembles typical nearly-free-electron Shockley states observed on noble-metal surfaces. However, pump-probe ARPES reveals that the spin-polarized pair traverses the bulk band gap and that the crossing of the pair at $barGamma$ is topologically unavoidable. First-principles calculations well reproduce the bands and their non-trivial topology; the calculations also support that the surface states are of Shockley type because they arise from a band inversion caused by crystal field. The results provide compelling evidence that topological Shockley states are realized on As(111).
Within density functional theory, we study bulk band structure and surface states of BiTeBr. We consider both ordered and disordered phases which differ in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio calculations, we show that the ordered BiTeBr is energetically preferable as compared with the disordered one. We demonstrate that both Te- and Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant spin-orbit splitting. The Te-terminated surface-state spin splitting has the Rashba-type behavior with the coupling parameter alpha_R ~ 2 eVAA.
We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin-splitting, the different orbital and spin parts of the surface wavefucntion are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin-polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridyzation proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p- and s-polarized light.
$alpha$-GeTe(111) is a non-centrosymmetric ferroelectric material, for which a strong spin-orbit interaction gives rise to giant Rashba split states in the bulk and at the surface. The detailed dispersions of the surface states inside the bulk band gap remains an open question because they are located in the unoccupied part of the electronic structure, making them inaccessible to static angle-resolved photoemission spectroscopy. We show that this difficulty can be overcome via in-situ potassium doping of the surface, leading to a rigid shift of 80 meV of the surface states into the occupied states. Thus, we resolve in great detail their dispersion and highlight their crossing at the $bar{Gamma}$ point, which, in comparison with density functional theory calculations, definitively confirms the Rashba mechanism.
We report the preparation of the interface between graphene and the strong Rashba-split BiAg$_2$ surface alloy and investigatigation of its structure as well as the electronic properties by means of scanning tunneling microscopy/spectroscopy and density functional theory calculations. Upon evaluation of the quasiparticle interference patterns the unpertrubated linear dispersion for the $pi$ band of $n$-doped graphene is observed. Our results also reveal the intact nature of the giant Rashba-split surface states of the BiAg$_2$ alloy, which demonstrate only a moderate downward energy shift upon the presence of graphene. This effect is explained in the framework of density functional theory by an inward relaxation of the Bi atoms at the interface and subsequent delocalisation of the wave function of the surface states. Our findings demonstrate a realistic pathway to prepare a graphene protected giant Rashba-split BiAg$_2$ for possible spintronic applications.
Entangled multiphoton states lie at the heart of quantum information, computing, and communications. In recent years, topology has risen as a new avenue to robustly transport quantum states in the presence of fabrication defects, disorder and other noise sources. Whereas topological protection of single photons and correlated photons has been recently demonstrated experimentally, the observation of topologically protected entangled states has thus far remained elusive. Here, we experimentally demonstrate the topological protection of spatially-entangled biphoton states. We observe robustness in crucial features of the topological biphoton correlation map in the presence of deliberately introduced disorder in the silicon nanophotonic structure, in contrast with the lack of robustness in nontopological structures. The topological protection is shown to ensure the coherent propagation of the entangled topological modes, which may lead to robust propagation of quantum information in disordered systems.