No Arabic abstract
We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ~ 40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the b{eta} Pictoris Moving Group, r{ho} Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius-Centaurus, and Tucana-Horologium. Our work features: 1.) a filtering technique to flag noisy backgrounds, 2.) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources, and 3.) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 {mu}m decays relatively slowly initially and then much more rapidly by ~ 10 Myr. However, there is a continuing component until ~ 35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12 - 20 Myr, including ~ 13 % of the original population, and with a post-peak mean duration of 10 - 20 Myr.
The growth of dust grains in protoplanetary disks is a necessary first step towards planet formation. This growth has been inferred via observations of thermal dust emission towards mature protoplanetary systems (age >2 million years) with masses that are, on average, similar to Neptune3. In contrast, the majority of confirmed exoplanets are heavier than Neptune. Given that young protoplanetary disks are more massive than their mature counterparts, this suggests that planet formation starts early, but evidence for grain growth that is spatially and temporally coincident with a massive reservoir in young disks remains scarce. Here, we report observations on a lack of emission of carbon monoxide isotopologues within the inner ~15 au of a very young (age ~100,000 years) disk around the Solar-type protostar TMC1A. By using the absence of spatially resolved molecular line emission to infer the gas and dust content of the disk, we conclude that shielding by millimeter-size grains is responsible for the lack of emission. This suggests that grain growth and millimeter-size dust grains can be spatially and temporally coincident with a mass reservoir sufficient for giant planet formation. Hence, planet formation starts during the earliest, embedded phases in the life of young stars.
Whether among the myriad tiny proto-galaxies there exists a population with similarities to present day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the first massive galaxies to form are %in fact predicted to have extensive rotationally-supported disks. Although their morphology resembles in some ways Milky-way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift $z=8-10$ we have found that disk galaxies make up 70% of the population of galaxies with stellar mass $10^{10} M_odot$ or greater. Cold Dark Matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g. WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make possible new tests of cosmology.
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of 0.001 - 0.003 Msun, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.
We use a time-dependent hydrodynamic code and a non-LTE Monte Carlo code to model disk dissipation for the Be star 66 Ophiuchi. We compiled 63 years of observations from 1957 to 2020 to encompass the complete history of the growth and subsequent dissipation of the stars disk. Our models are constrained by new and archival photometry, spectroscopy and polarization observations, allowing us to model the disk dissipation event. Using Markov chain Monte Carlo methods, we find 66 Oph is consistent with standard B2Ve stellar properties. We computed a grid of 61568 Be star disk models to constrain the density profile of the disk before dissipation using observations of the H$alpha$ line profile and SED. We find at the onset of dissipation the disk has a base density of $2.5times10^{-11} rm{g cm^{-3}}$ with a radial power-law index of $n=2.6$. Our models indicate that after 21 years of disk dissipation 66 Ophs outer disk remained present and bright in the radio. We find an isothermal disk with constant viscosity with an $alpha = 0.4$ and an outer disk radius of $sim$115 stellar radii best reproduces the rate of 66 Ophs disk dissipation. We determined the interstellar polarization in the direction of the star in the V-band is $p=0.63 pm 0.02%$ with a polarization position angle of $theta_{IS}approx85.7 pm 0.7^circ$. Using the Stokes QU diagram, we find the intrinsic polarization position angle of 66 Ophs disk is $theta_{int}approx98 pm 3^circ$.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.