No Arabic abstract
We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynamics (QED). Our analytical result, obtained using the background field method, infrared rearrangement via a new diagram-by-diagram implementation of the R* operation and the Forcer program for massless four-loop propagators, confirms the QCD and QED results obtained by only one group before. The numerical size of the five-loop corrections is briefly discussed in the standard MSbar scheme for QCD with n_f flavours and for pure SU(N) Yang-Mills theory. Their effect in QCD is much smaller than the four-loop contributions, even at rather low scales.
We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.
To set the stage, I discuss the $beta$-function of the massless O(N) model in three dimensions, which can be calculated exactly in the large N limit. Then, I consider SU(N) Yang-Mills theory in 2+1 space-time dimensions. Relating the $beta$-function to the expectation value of the action in lattice gauge theory, and the latter to the trace of the energy-momentum tensor, I show that $frac{d ln g^2/mu}{dln mu}=-1$ for all $g$ and all N in one particular renormalization scheme. As a consequence, I find that the Yang-Mills $beta$-function in three dimensions must have the same sign for all finite and positive bare coupling parameters in any renormalization scheme, and all non-trivial infrared fixed points are unreachable in practice.
We present analytical results for the $N_f^4$ and $N_f^3$ terms of the five-loop Beta function, for a general gauge group. While the former term agrees with results available from large-$N_f$ studies, the latter is new and extends the value known for SU(3) from an independent calculation.
Building upon our earlier work, we compute a Debye mass of finite-temperature Yang-Mills theory to three-loop order. As an application, we determine a $g^7$ contribution to the thermodynamic pressure of hot QCD.
We consider spatial coarse-graining in statistical ensembles of non-selfintersecting and one-fold selfintersecting center-vortex loops as they emerge in the confining phase of SU(2) Yang-Mills thermodynamics. This coarse-graining is due to a noisy environment and described by a curve shrinking flow of center-vortex loops locally embedded in a two-dimensional flat plane. The renormalization-group flow of an effective `action, which is defined in purely geometric terms, is driven by the curve shrinking evolution. In the case of non-selfintersecting center-vortex loops, we observe critical behavior of the effective `action as soon as the center-vortex loops vanish from the spectrum of the confining phase due to curve shrinking. This suggest the existence of an asymptotic mass gap. An entirely unexpected behavior in the ensemble of one-fold selfintersecting center-vortex loops is connected with the spontaneous emergence of order. We speculate that the physics of planar, one-fold selfintersecting center-vortex loops to be relevant for two-dimensional systems exhibiting high-temperature superconductivity.