No Arabic abstract
To set the stage, I discuss the $beta$-function of the massless O(N) model in three dimensions, which can be calculated exactly in the large N limit. Then, I consider SU(N) Yang-Mills theory in 2+1 space-time dimensions. Relating the $beta$-function to the expectation value of the action in lattice gauge theory, and the latter to the trace of the energy-momentum tensor, I show that $frac{d ln g^2/mu}{dln mu}=-1$ for all $g$ and all N in one particular renormalization scheme. As a consequence, I find that the Yang-Mills $beta$-function in three dimensions must have the same sign for all finite and positive bare coupling parameters in any renormalization scheme, and all non-trivial infrared fixed points are unreachable in practice.
By using the method of center projection the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of non-trivial center links bounded by the closed 2-dimensional center vortex surfaces. The center field propagator is found to dominate the gluon propagator (in Landau gauge) in the low momentum regime and to give rise to an OPE correction to the latter of ${sqrt{sigma}}/{p^3}$.The screening mass of the center vortex field vanishes above the critical temperature of the deconfinement phase transition, which naturally explains the second order nature of this transition consistent with the vortex picture. Finally, the ghost propagator of maximal center gauge is found to be infrared finite and thus shows that the coset fields play no role for confinement.
We solve exactly the Dyson-Schwinger equations for Yang-Mills theory in 3 and 4 dimensions. This permits us to obtain the exact correlation functions till order 2. In this way, the spectrum of the theory is straightforwardly obtained and comparison with lattice data can be accomplished. The results are in exceedingly good agreement with an error well below 1%. This extends both to 3 and 4 dimensions and varying the degree of the gauge group. These results provide a strong support to the value of the lattice computations and show once again how precise can be theoretical computations in quantum field theory.
The width of the quantum delocalization of the QCD strings is investigated in effective string models beyond free Nambu-Goto approximation. We consider two Lorentzian-invariant boundary-terms in the Luscher-Weisz string action in addition to self-interaction term equivalent to two loop order in the (NG) string action. The geometrical terms which realize the possible rigidity of the QCD string is scrutinized as well. We perform the numerical analysis on the 4-dim pure $SU(3)$ Yang-Mills lattice gauge theory at two temperature scales near deconfinement point. The comparative study with this QCD string model targets the width of the energy profile of a static quark-antiquark system for color sources separation $0.5 le R le 1.2$ fm. We find the inclusion of rigidity properties and symmetry effects of the boundary action into the string paradigm to reproduce a good match with the profile of the Mont-Carlo data of QCD flux-tube on this distance scale.
We review our recent work on the glueball spectrum of pure Yang-Mills theory in 2+1 dimensions. The calculations make use of Karabali-Nair corner variables in the Hamiltonian formalism, and involve a determination of the leading form of the ground-state wavefunctional.
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effects are hardly visible in the effective Coulomb potential, scaling violations and a strong dependence on the choice of Gribov copy are observed. We obtain bounds for the Coulomb string tension that are in agreement with Zwanzigers inequality relating the Coulomb string tension to the Wilson string tension.