Do you want to publish a course? Click here

Excitation and detection of short-waved spin waves in ultrathin Ta/CoFeB/MgO-layer system suitable for spin-orbit-torque magnonics

109   0   0.0 ( 0 )
 Added by Thomas Br\\\"acher
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the excitation and detection of short-waved spin waves with wave vectors up to about $40,mathrm{rad},mumathrm{m}^{-1}$ in spin-wave waveguides made from ultrathin, in-plane magnetized Co$_{8}$Fe$_{72}$B$_{20}$ (CoFeB). The CoFeB is incorporated in a layer stack of Ta/CoFeB/Mgo, a layer system featuring large spin orbit torques and a large perpendicular magnetic anisotropy constant. The short-waved spin waves are excited by nanometric coplanar waveguides and are detected via spin rectification and microfocussed Brillouin light scattering spectroscopy. We show that the large perpendicular magnetic anisotropy benefits the spin-wave lifetime greatly, resulting in a lifetime comparable to bulk systems without interfacial damping. The presented results pave the way for the successful extension of magnonics to ultrathin asymmetric layer stacks featuring large spin orbit torques.



rate research

Read More

Spin current generated by spin Hall effect in the heavy metal would diffuse up and down to adjacent ferromagnetic layers and exert torque on their magnetization, called spin-orbit torque. Antiferromagnetically coupled trilayers, namely the so-called synthetic antiferromagnets (SAF), are usually employed to serve as the pinned layer of spintronic devices based on spin valves and magnetic tunnel junctions to reduce the stray field and/or increase the pinning field. Here we investigate the spin-orbit torque in MgO/CoFeB/Ta/CoFeB/MgO perpendicularly magnetized multilayer with interlayer antiferromagnetic coupling. It is found that the magnetization of two CoFeB layers can be switched between two antiparallel states simultaneously. This observation is replicated by the theoretical calculations by solving Stoner-Wohlfarth model and Landau-Lifshitz-Gilbert equation. Our findings combine spin-orbit torque and interlayer coupling, which might advance the magnetic memories with low stray field and low power consumption.
We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission electron microscopy, resistivity, and Hall effect measurements. By performing adiabatic harmonic Hall voltage measurements, we show that the transverse (field-like) and longitudinal (antidamping-like) spin-orbit torques are composed of constant and magnetization-dependent contributions, both of which vary strongly with annealing. Such variations correlate with changes of the saturation magnetization and magnetic anisotropy and are assigned to chemical and structural modifications of the layers. The relative variation of the constant and anisotropic torque terms as a function of annealing temperature is opposite for the field-like and antidamping torques. Measurements of the switching probability using sub-{mu}s current pulses show that the critical current increases with the magnetic anisotropy of the layers, whereas the switching efficiency, measured as the ratio of magnetic anisotropy energy and pulse energy, decreases. The optimal annealing temperature to achieve maximum magnetic anisotropy, saturation magnetization, and switching efficiency is determined to be between 240 degrees and 270 degrees C.
We investigate the spin Hall effect in perpendicularly magnetized Ta/Co40Fe40B20/MgO trilayers with Ta underlayers thicker than the spin diffusion length. The crystallographic structures of the Ta layer and Ta/CoFeB interface are examined in detail using X-ray diffraction and transmission electron microscopy. The thinnest Ta underlayer is amorphous, whereas for thicker Ta layers a disoriented tetragonal beta-phase appears. Effective spin-orbit torques are calculated based on harmonic Hall voltage measurements performed in a temperature range between 15 and 300 K. To account for the temperature dependence of damping-like and field-like torques, we extend the spin diffusion model by including an additional contribution from the Ta/CoFeB interface. Based on this approach, the temperature dependence of the spin Hall angle in the Ta underlayer and at Ta/CoFeB interface are determined separately. The results indicate an almost temperature-independent spin Hall angle of theta_SH-N = -0.2 in Ta and a strongly temperature-dependent theta_SH-I for the intermixed Ta/CoFeB interface.
181 - Jinsong Xu , C.L. Chien 2021
Voltage control of magnetism and spintronics have been highly desirable, but rarely realized. In this work, we show voltage-controlled spin-orbit torque (SOT) switching in W/CoFeB/MgO films with perpendicular magnetic anisotropy (PMA) with voltage administered through SrTiO3 with a high dielectric constant. We show that a DC voltage can significantly lower PMA by 45%, reduce switching current by 23%, and increase the damping-like torque as revealed by the first and second-harmonic measurements. These are characteristics that are prerequisites for voltage-controlled and voltage-select SOT switching spintronic devices.
Spin-orbit torque facilitates efficient magnetization switching via an in-plane current in perpendicularly magnetized heavy metal/ferromagnet heterostructures. The efficiency of spin-orbit-torque-induced switching is determined by the charge-to-spin conversion arising from either bulk or interfacial spin-orbit interactions, or both. Here, we demonstrate that the spin-orbit torque and the resultant switching efficiency in Pt/CoFeB systems are significantly enhanced by an interfacial modification involving Ti insertion between the Pt and CoFeB layers. Spin pumping and X-ray magnetic circular dichroism experiments reveal that this enhancement is due to an additional interface-generated spin current of the nonmagnetic interface and/or improved spin transparency achieved by suppressing the proximity-induced moment in the Pt layer. Our results demonstrate that interface engineering affords an effective approach to improve spin-orbit torque and thereby magnetization switching efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا