Do you want to publish a course? Click here

Collaborative Alerts Ranking for Anomaly Detection

70   0   0.0 ( 0 )
 Added by Ying Lin
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Given a large number of low-level heterogeneous categorical alerts from an anomaly detection system, how to characterize complex relationships between different alerts, filter out false positives, and deliver trustworthy rankings and suggestions to end users? This problem is motivated by and generalized from applications in enterprise security and attack scenario reconstruction. While existing techniques focus on either reconstructing abnormal scenarios or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand anomaly behaviors. In this paper, we propose CAR, a collaborative alerts ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a tree-based model to capture both short-term correlations and long-term dependencies in each alert sequence, which identifies abnormal action sequences. Then, an embedding-based model is employed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into one optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments, using real-world enterprise monitoring data and real attacks launched by professional hackers, show that CAR can accurately identify true positive alerts and successfully reconstruct attack scenarios at the same time.



rate research

Read More

Due to their rapid growth and deployment, the Internet of things (IoT) have become a central aspect of our daily lives. Unfortunately, IoT devices tend to have many vulnerabilities which can be exploited by an attacker. Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner. However, anomaly detection models must be trained for a long time in order to capture all benign behaviors. Furthermore, the anomaly detection model is vulnerable to adversarial attacks since, during the training phase, all observations are assumed to be benign. In this paper, we propose (1) a novel approach for anomaly detection and (2) a lightweight framework that utilizes the blockchain to ensemble an anomaly detection model in a distributed environment. Blockchain framework incrementally updates a trusted anomaly detection model via self-attestation and consensus among the IoT devices. We evaluate our method on a distributed IoT simulation platform, which consists of 48 Raspberry Pis. The simulation demonstrates how the approach can enhance the security of each device and the security of the network as a whole.
Many current approaches to the design of intrusion detection systems apply feature selection in a static, non-adaptive fashion. These methods often neglect the dynamic nature of network data which requires to use adaptive feature selection techniques. In this paper, we present a simple technique based on incremental learning of support vector machines in order to rank the features in real time within a streaming model for network data. Some illustrative numerical experiments with two popular benchmark datasets show that our approach allows to adapt to the changes in normal network behaviour and novel attack patterns which have not been experienced before.
Recently, coordinated attack campaigns started to become more widespread on the Internet. In May 2017, WannaCry infected more than 300,000 machines in 150 countries in a few days and had a large impact on critical infrastructure. Existing threat sharing platforms cannot easily adapt to emerging attack patterns. At the same time, enterprises started to adopt machine learning-based threat detection tools in their local networks. In this paper, we pose the question: emph{What information can defenders share across multiple networks to help machine learning-based threat detection adapt to new coordinated attacks?} We propose three information sharing methods across two networks, and show how the shared information can be used in a machine-learning network-traffic model to significantly improve its ability of detecting evasive self-propagating malware.
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such attacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.
As the communication industry has connected distant corners of the globe using advances in network technology, intruders or attackers have also increased attacks on networking infrastructure commensurately. System administrators can attempt to prevent such attacks using intrusion detection tools and systems. There are many commercially available signature-based Intrusion Detection Systems (IDSs). However, most IDSs lack the capability to detect novel or previously unknown attacks. A special type of IDSs, called Anomaly Detection Systems, develop models based on normal system or network behavior, with the goal of detecting both known and unknown attacks. Anomaly detection systems face many problems including high rate of false alarm, ability to work in online mode, and scalability. This paper presents a selective survey of incremental approaches for detecting anomaly in normal system or network traffic. The technological trends, open problems, and challenges over anomaly detection using incremental approach are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا