Do you want to publish a course? Click here

On Blockchain Architectures for Trust-Based Collaborative Intrusion Detection

125   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such attacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.

rate research

Read More

Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailored to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
Due to their rapid growth and deployment, the Internet of things (IoT) have become a central aspect of our daily lives. Unfortunately, IoT devices tend to have many vulnerabilities which can be exploited by an attacker. Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner. However, anomaly detection models must be trained for a long time in order to capture all benign behaviors. Furthermore, the anomaly detection model is vulnerable to adversarial attacks since, during the training phase, all observations are assumed to be benign. In this paper, we propose (1) a novel approach for anomaly detection and (2) a lightweight framework that utilizes the blockchain to ensemble an anomaly detection model in a distributed environment. Blockchain framework incrementally updates a trusted anomaly detection model via self-attestation and consensus among the IoT devices. We evaluate our method on a distributed IoT simulation platform, which consists of 48 Raspberry Pis. The simulation demonstrates how the approach can enhance the security of each device and the security of the network as a whole.
There has been tremendous interest in the development of formal trust models and metrics through the use of analytics (e.g., Belief Theory and Bayesian models), logics (e.g., Epistemic and Subjective Logic) and other mathematical models. The choice of trust metric will depend on context, circumstance and user requirements and there is no single best metric for use in all circumstances. Where different users require different trust metrics to be employed the trust score calculations should still be based on all available trust evidence. Trust is normally computed using past experiences but, in practice (especially in centralised systems), the validity and accuracy of these experiences are taken for granted. In this paper, we provide a formal framework and practical blockchain-based implementation that allows independent trust providers to implement different trust metrics in a distributed manner while still allowing all trust providers to base their calculations on a common set of trust evidence. Further, our design allows experiences to be provably linked to interactions without the need for a central authority. This leads to the notion of evidence-based trust with provable interactions. Leveraging blockchain allows the trust providers to offer their services in a competitive manner, charging fees while users are provided with payments for recording experiences. Performance details of the blockchain implementation are provided.
An Intrusion Detection System (IDS) aims to alert users of incoming attacks by deploying a detector that monitors network traffic continuously. As an effort to increase detection capabilities, a set of independent IDS detectors typically work collaboratively to build intelligence of holistic network representation, which is referred to as Collaborative Intrusion Detection System (CIDS). However, developing an effective CIDS, particularly for the IoT ecosystem raises several challenges. Recent trends and advances in blockchain technology, which provides assurance in distributed trust and secure immutable storage, may contribute towards the design of effective CIDS. In this poster abstract, we present our ongoing work on a decentralized CIDS for IoT, which is based on blockchain technology. We propose an architecture that provides accountable trust establishment, which promotes incentives and penalties, and scalable intrusion information storage by exchanging bloom filters. We are currently implementing a proof-of-concept of our modular architecture in a local test-bed and evaluate its effectiveness in detecting common attacks in IoT networks and the associated overhead.
This paper introduces a new similarity measure, the covering similarity, that we formally define for evaluating the similarity between a symbolic sequence and a set of symbolic sequences. A pair-wise similarity can also be directly derived from the covering similarity to compare two symbolic sequences. An efficient implementation to compute the covering similarity is proposed that uses a suffix tree data-structure, but other implementations, based on suffix array for instance, are possible and possibly necessary for handling large scale problems. We have used this similarity to isolate attack sequences from normal sequences in the scope of Host-based Intrusion Detection. We have assessed the covering similarity on two well-known benchmarks in the field. In view of the results reported on these two datasets for the state of the art methods, and according to the comparative study we have carried out based on three challenging similarity measures commonly used for string processing or in bioinformatics, we show that the covering similarity is particularly relevant to address the detection of anomalies in sequences of system calls
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا