No Arabic abstract
We develop a method for the accurate reconstruction of non-bandlimited finite rate of innovation signals on the sphere. For signals consisting of a finite number of Dirac functions on the sphere, we develop an annihilating filter based method for the accurate recovery of parameters of the Dirac functions using a finite number of observations of the bandlimited signal. In comparison to existing techniques, the proposed method enables more accurate reconstruction primarily due to better conditioning of systems involved in the recovery of parameters. For the recovery of $K$ Diracs on the sphere, the proposed method requires samples of the signal bandlimited in the spherical harmonic~(SH) domain at SH degree equal or greater than $ K + sqrt{K + frac{1}{4}} - frac{1}{2}$. In comparison to the existing state-of-the art technique, the required bandlimit, and consequently the number of samples, of the proposed method is the same or less. We also conduct numerical experiments to demonstrate that the proposed technique is more accurate than the existing methods by a factor of $10^{7}$ or more for $2 le Kle 20$.
We present the generalized iterative residual fitting (IRF) for the computation of the spherical harmonic transform (SHT) of band-limited signals on the sphere. The proposed method is based on the partitioning of the subspace of band-limited signals into orthogonal subspaces. There exist sampling schemes on the sphere which support accurate computation of SHT. However, there are applications where samples~(or measurements) are not taken over the predefined grid due to nature of the signal and/or acquisition set-up. To support such applications, the proposed IRF method enables accurate computation of SHTs of signals with randomly distributed sufficient number of samples. In order to improve the accuracy of the computation of the SHT, we also present the so-called multi-pass IRF which adds multiple iterative passes to the IRF. We analyse the multi-pass IRF for different sampling schemes and for different size partitions. Furthermore, we conduct numerical experiments to illustrate that the multi-pass IRF allows sufficiently accurate computation of SHTs.
The emerging field of signal processing on graph plays a more and more important role in processing signals and information related to networks. Existing works have shown that under certain conditions a smooth graph signal can be uniquely reconstructed from its decimation, i.e., data associated with a subset of vertices. However, in some potential applications (e.g., sensor networks with clustering structure), the obtained data may be a combination of signals associated with several vertices, rather than the decimation. In this paper, we propose a new concept of local measurement, which is a generalization of decimation. Using the local measurements, a local-set-based method named iterative local measurement reconstruction (ILMR) is proposed to reconstruct bandlimited graph signals. It is proved that ILMR can reconstruct the original signal perfectly under certain conditions. The performance of ILMR against noise is theoretically analyzed. The optimal choice of local weights and a greedy algorithm of local set partition are given in the sense of minimizing the expected reconstruction error. Compared with decimation, the proposed local measurement sampling and reconstruction scheme is more robust in noise existing scenarios.
As technology grows, higher frequency signals are required to be processed in various applications. In order to digitize such signals, conventional analog to digital convertors are facing implementation challenges due to the higher sampling rates. Hence, lower sampling rates (i.e., sub-Nyquist) are considered to be cost efficient. A well-known approach is to consider sparse signals that have fewer nonzero frequency components compared to the highest frequency component. For the prior knowledge of the sparse positions, well-established methods already exist. However, there are applications where such information is not available. For such cases, a number of approaches have recently been proposed. In this paper, we propose several random sampling recovery algorithms which do not require any anti-aliasing filter. Moreover, we offer certain conditions under which these recovery techniques converge to the signal. Finally, we also confirm the performance of the above methods through extensive simulations.
It is shown that for any binary-input discrete memoryless channel $W$ with symmetric capacity $I(W)$ and any rate $R <I(W)$, the probability of block decoding error for polar coding under successive cancellation decoding satisfies $P_e le 2^{-N^beta}$ for any $beta<frac12$ when the block-length $N$ is large enough.
We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used in array signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can reconstruct $K$ spikes from $(K+sqrt{K})^2$ spatial samples. This sampling requirement improves over previously known FRI sampling schemes on the sphere by a factor of four for large $K$. We showcase the versatility of the proposed algorithm by applying it to three different problems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise removal, and 3) sound source localization (SSL) by a spherical microphone array. In particular, we show how SSL can be reformulated as a spherical sparse sampling problem.