Do you want to publish a course? Click here

Iterative Residual Fitting for Spherical Harmonic Transform of Band-Limited Signals on the Sphere: Generalization and Analysis

85   0   0.0 ( 0 )
 Added by Zubair Khalid
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present the generalized iterative residual fitting (IRF) for the computation of the spherical harmonic transform (SHT) of band-limited signals on the sphere. The proposed method is based on the partitioning of the subspace of band-limited signals into orthogonal subspaces. There exist sampling schemes on the sphere which support accurate computation of SHT. However, there are applications where samples~(or measurements) are not taken over the predefined grid due to nature of the signal and/or acquisition set-up. To support such applications, the proposed IRF method enables accurate computation of SHTs of signals with randomly distributed sufficient number of samples. In order to improve the accuracy of the computation of the SHT, we also present the so-called multi-pass IRF which adds multiple iterative passes to the IRF. We analyse the multi-pass IRF for different sampling schemes and for different size partitions. Furthermore, we conduct numerical experiments to illustrate that the multi-pass IRF allows sufficiently accurate computation of SHTs.



rate research

Read More

We revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We then construct a spherical ridgelet transform by composing the spherical Radon and scale-discretised wavelet transforms on the sphere. The resulting spherical ridgelet transform also admits exact inversion for antipodal signals. The restriction to antipodal signals is expected since the spherical Radon and ridgelet transforms themselves result in signals that exhibit antipodal symmetry. Our ridgelet transform is defined natively on the sphere, probes signal content globally along great circles, does not exhibit blocking artefacts, supports spin signals and exhibits an exact and explicit inverse transform. No alternative ridgelet construction on the sphere satisfies all of these properties. Our implementation of the spherical Radon and ridgelet transforms is made publicly available. Finally, we illustrate the effectiveness of spherical ridgelets for diffusion magnetic resonance imaging of white matter fibers in the brain.
155 - T. D. Carozzi 2015
I present an exact and explicit solution to the scalar (Stokes flux intensity) radio interferometer imaging equation on a spherical surface which is valid also for non-coplanar interferometer configurations. This imaging equation is comparable to $w$-term imaging algorithms, but by using a spherical rather than a Cartesian formulation this term has no special significance. The solution presented also allows direct identification of the scalar (spin 0 weighted) spherical harmonics on the sky. The method should be of interest for future multi-spacecraft interferometers, wide-field imaging with non-coplanar arrays, and CMB spherical harmonic measurements using interferometers.
60 - Yahya Sattar , Zubair Khalid , 2016
We develop a method for the accurate reconstruction of non-bandlimited finite rate of innovation signals on the sphere. For signals consisting of a finite number of Dirac functions on the sphere, we develop an annihilating filter based method for the accurate recovery of parameters of the Dirac functions using a finite number of observations of the bandlimited signal. In comparison to existing techniques, the proposed method enables more accurate reconstruction primarily due to better conditioning of systems involved in the recovery of parameters. For the recovery of $K$ Diracs on the sphere, the proposed method requires samples of the signal bandlimited in the spherical harmonic~(SH) domain at SH degree equal or greater than $ K + sqrt{K + frac{1}{4}} - frac{1}{2}$. In comparison to the existing state-of-the art technique, the required bandlimit, and consequently the number of samples, of the proposed method is the same or less. We also conduct numerical experiments to demonstrate that the proposed technique is more accurate than the existing methods by a factor of $10^{7}$ or more for $2 le Kle 20$.
We propose a transform for signals defined on the sphere that reveals their localized directional content in the spatio-spectral domain when used in conjunction with an asymmetric window function. We call this transform the directional spatially localized spherical harmonic transform (directional SLSHT) which extends the SLSHT from the literature whose usefulness is limited to symmetric windows. We present an inversion relation to synthesize the original signal from its directional-SLSHT distribution for an arbitrary window function. As an example of an asymmetric window, the most concentrated band-limited eigenfunction in an elliptical region on the sphere is proposed for directional spatio-spectral analysis and its effectiveness is illustrated on the synthetic and Mars topographic data-sets. Finally, since such typical data-sets on the sphere are of considerable size and the directional SLSHT is intrinsically computationally demanding depending on the band-limits of the signal and window, a fast algorithm for the efficient computation of the transform is developed. The floating point precision numerical accuracy of the fast algorithm is demonstrated and a full numerical complexity analysis is presented.
A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an $N$ dimensional signal with a $K$-sparse WHT, where $N$ is a power of two and $K = O(N^alpha)$, scales sub-linearly in $N$ for some $0 < alpha < 1$. Assuming a random support model for the non-zero transform domain components, the algorithm reconstructs the WHT of the signal with a sample complexity $O(K log_2(frac{N}{K}))$, a computational complexity $O(Klog_2(K)log_2(frac{N}{K}))$ and with a very high probability asymptotically tending to 1. The approach is based on the subsampling (aliasing) property of the WHT, where by a carefully designed subsampling of the time domain signal, one can induce a suitable aliasing pattern in the transform domain. By treating the aliasing patterns as parity-check constraints and borrowing ideas from erasure correcting sparse-graph codes, the recovery of the non-zero spectral values has been formulated as a belief propagation (BP) algorithm (peeling decoding) over a sparse-graph code for the binary erasure channel (BEC). Tools from coding theory are used to analyze the asymptotic performance of the algorithm in the very sparse ($alphain(0,frac{1}{3}]$) and the less sparse ($alphain(frac{1}{3},1)$) regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا