No Arabic abstract
In high reliability standards fields such as automotive, avionics or aerospace, the detection of anomalies is crucial. An efficient methodology for automatically detecting multivariate outliers is introduced. It takes advantage of the remarkable properties of the Invariant Coordinate Selection (ICS) method. Based on the simultaneous spectral decomposition of two scatter matrices, ICS leads to an affine invariant coordinate system in which the Euclidian distance corresponds to a Mahalanobis Distance (MD) in the original coordinates. The limitations of MD are highlighted using theoretical arguments in a context where the dimension of the data is large. Unlike MD, ICS makes it possible to select relevant components which removes the limitations. Owing to the resulting dimension reduction, the method is expected to improve the power of outlier detection rules such as MD-based criteria. It also greatly simplifies outliers interpretation. The paper includes practical guidelines for using ICS in the context of a small proportion of outliers which is relevant in high reliability standards fields. The choice of scatter matrices together with the selection of relevant invariant components through parallel analysis and normality tests are addressed. The use of the regular covariance matrix and the so called matrix of fourth moments as the scatter pair is recommended. This choice combines the simplicity of implementation together with the possibility to derive theoretical results. A simulation study confirms the good properties of the proposal and compares it with other scatter pairs. This study also provides a comparison with Principal Component Analysis and MD. The performance of our proposal is also evaluated on several real data sets using a user-friendly R package accompanying the paper.
A collection of robust Mahalanobis distances for multivariate outlier detection is proposed, based on the notion of shrinkage. Robust intensity and scaling factors are optimally estimated to define the shrinkage. Some properties are investigated, such as affine equivariance and breakdown value. The performance of the proposal is illustrated through the comparison to other techniques from the literature, in a simulation study and with a real dataset. The behavior when the underlying distribution is heavy-tailed or skewed, shows the appropriateness of the method when we deviate from the common assumption of normality. The resulting high correct detection rates and low false detection rates in the vast majority of cases, as well as the significantly smaller computation time shows the advantages of our proposal.
Mediation analysis has become an important tool in the behavioral sciences for investigating the role of intermediate variables that lie in the path between a randomized treatment and an outcome variable. The influence of the intermediate variable on the outcome is often explored using structural equation models (SEMs), with model coefficients interpreted as possible effects. While there has been significant research on the topic in recent years, little work has been done on mediation analysis when the intermediate variable (mediator) is a high-dimensional vector. In this work we present a new method for exploratory mediation analysis in this setting called the directions of mediation (DMs). The first DM is defined as the linear combination of the elements of a high-dimensional vector of potential mediators that maximizes the likelihood of the SEM. The subsequent DMs are defined as linear combinations of the elements of the high-dimensional vector that are orthonormal to the previous DMs and maximize the likelihood of the SEM. We provide an estimation algorithm and establish the asymptotic properties of the obtained estimators. This method is well suited for cases when many potential mediators are measured. Examples of high-dimensional potential mediators are brain images composed of hundreds of thousands of voxels, genetic variation measured at millions of SNPs, or vectors of thousands of variables in large-scale epidemiological studies. We demonstrate the method using a functional magnetic resonance imaging (fMRI) study of thermal pain where we are interested in determining which brain locations mediate the relationship between the application of a thermal stimulus and self-reported pain.
We propose a multivariate functional responses low rank regression model with possible high dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve basis, we reconstruct the basis coefficients as a matrix. To estimate these coefficients, we propose an efficient procedure using nuclear norm regularization. We also derive error bounds for our estimates and evaluate our method using simulations. We further apply our method to the Human Connectome Project neuroimaging data to predict cortical surface motor task-evoked functional magnetic resonance imaging signals using various clinical covariates to illustrate the usefulness of our results.
Deep neural networks have achieved great success in classification tasks during the last years. However, one major problem to the path towards artificial intelligence is the inability of neural networks to accurately detect samples from novel class distributions and therefore, most of the existent classification algorithms assume that all classes are known prior to the training stage. In this work, we propose a methodology for training a neural network that allows it to efficiently detect out-of-distribution (OOD) examples without compromising much of its classification accuracy on the test examples from known classes. We propose a novel loss function that gives rise to a novel method, Outlier Exposure with Confidence Control (OECC), which achieves superior results in OOD detection with OE both on image and text classification tasks without requiring access to OOD samples. Additionally, we experimentally show that the combination of OECC with state-of-the-art post-training OOD detection methods, like the Mahalanobis Detector (MD) and the Gramian Matrices (GM) methods, further improves their performance in the OOD detection task, demonstrating the potential of combining training and post-training methods for OOD detection.
In the field of materials science and engineering, statistical analysis and machine learning techniques have recently been used to predict multiple material properties from an experimental design. These material properties correspond to response variables in the multivariate regression model. This study conducts a penalized maximum likelihood procedure to estimate model parameters, including the regression coefficients and covariance matrix of response variables. In particular, we employ $l_1$-regularization to achieve a sparse estimation of regression coefficients and the inverse covariance matrix of response variables. In some cases, there may be a relatively large number of missing values in response variables, owing to the difficulty in collecting data on material properties. A method to improve prediction accuracy under the situation with missing values incorporates a correlation structure among the response variables into the statistical model. The expectation and maximization algorithm is constructed, which enables application to a data set with missing values in the responses. We apply our proposed procedure to real data consisting of 22 material properties.