Do you want to publish a course? Click here

Sparse multivariate regression with missing values and its application to the prediction of material properties

65   0   0.0 ( 0 )
 Added by Keisuke Teramoto
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the field of materials science and engineering, statistical analysis and machine learning techniques have recently been used to predict multiple material properties from an experimental design. These material properties correspond to response variables in the multivariate regression model. This study conducts a penalized maximum likelihood procedure to estimate model parameters, including the regression coefficients and covariance matrix of response variables. In particular, we employ $l_1$-regularization to achieve a sparse estimation of regression coefficients and the inverse covariance matrix of response variables. In some cases, there may be a relatively large number of missing values in response variables, owing to the difficulty in collecting data on material properties. A method to improve prediction accuracy under the situation with missing values incorporates a correlation structure among the response variables into the statistical model. The expectation and maximization algorithm is constructed, which enables application to a data set with missing values in the responses. We apply our proposed procedure to real data consisting of 22 material properties.



rate research

Read More

We propose a multivariate functional responses low rank regression model with possible high dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve basis, we reconstruct the basis coefficients as a matrix. To estimate these coefficients, we propose an efficient procedure using nuclear norm regularization. We also derive error bounds for our estimates and evaluate our method using simulations. We further apply our method to the Human Connectome Project neuroimaging data to predict cortical surface motor task-evoked functional magnetic resonance imaging signals using various clinical covariates to illustrate the usefulness of our results.
This paper proposes a fast and accurate method for sparse regression in the presence of missing data. The underlying statistical model encapsulates the low-dimensional structure of the incomplete data matrix and the sparsity of the regression coefficients, and the proposed algorithm jointly learns the low-dimensional structure of the data and a linear regressor with sparse coefficients. The proposed stochastic optimization method, Sparse Linear Regression with Missing Data (SLRM), performs an alternating minimization procedure and scales well with the problem size. Large deviation inequalities shed light on the impact of the various problem-dependent parameters on the expected squared loss of the learned regressor. Extensive simulations on both synthetic and real datasets show that SLRM performs better than competing algorithms in a variety of contexts.
This paper proposes a maximum-likelihood approach to jointly estimate marginal conditional quantiles of multivariate response variables in a linear regression framework. We consider a slight reparameterization of the Multivariate Asymmetric Laplace distribution proposed by Kotz et al (2001) and exploit its location-scale mixture representation to implement a new EM algorithm for estimating model parameters. The idea is to extend the link between the Asymmetric Laplace distribution and the well-known univariate quantile regression model to a multivariate context, i.e. when a multivariate dependent variable is concerned. The approach accounts for association among multiple responses and study how the relationship between responses and explanatory variables can vary across different quantiles of the marginal conditional distribution of the responses. A penalized version of the EM algorithm is also presented to tackle the problem of variable selection. The validity of our approach is analyzed in a simulation study, where we also provide evidence on the efficiency gain of the proposed method compared to estimation obtained by separate univariate quantile regressions. A real data application is finally proposed to study the main determinants of financial distress in a sample of Italian firms.
Mediation analysis has become an important tool in the behavioral sciences for investigating the role of intermediate variables that lie in the path between a randomized treatment and an outcome variable. The influence of the intermediate variable on the outcome is often explored using structural equation models (SEMs), with model coefficients interpreted as possible effects. While there has been significant research on the topic in recent years, little work has been done on mediation analysis when the intermediate variable (mediator) is a high-dimensional vector. In this work we present a new method for exploratory mediation analysis in this setting called the directions of mediation (DMs). The first DM is defined as the linear combination of the elements of a high-dimensional vector of potential mediators that maximizes the likelihood of the SEM. The subsequent DMs are defined as linear combinations of the elements of the high-dimensional vector that are orthonormal to the previous DMs and maximize the likelihood of the SEM. We provide an estimation algorithm and establish the asymptotic properties of the obtained estimators. This method is well suited for cases when many potential mediators are measured. Examples of high-dimensional potential mediators are brain images composed of hundreds of thousands of voxels, genetic variation measured at millions of SNPs, or vectors of thousands of variables in large-scale epidemiological studies. We demonstrate the method using a functional magnetic resonance imaging (fMRI) study of thermal pain where we are interested in determining which brain locations mediate the relationship between the application of a thermal stimulus and self-reported pain.
Missing data are a common problem for both the construction and implementation of a prediction algorithm. Pattern mixture kernel submodels (PMKS) - a series of submodels for every missing data pattern that are fit using only data from that pattern - are a computationally efficient remedy for both stages. Here we show that PMKS yield the most predictive algorithm among all standard missing data strategies. Specifically, we show that the expected loss of a forecasting algorithm is minimized when each pattern-specific loss is minimized. Simulations and a re-analysis of the SUPPORT study confirms that PMKS generally outperforms zero-imputation, mean-imputation, complete-case analysis, complete-case submodels, and even multiple imputation (MI). The degree of improvement is highly dependent on the missingness mechanism and the effect size of missing predictors. When the data are Missing at Random (MAR) MI can yield comparable forecasting performance but generally requires a larger computational cost. We see that predictions from the PMKS are equivalent to the limiting predictions for a MI procedure that uses a mean model dependent on missingness indicators (the MIMI model). Consequently, the MIMI model can be used to assess the MAR assumption in practice. The focus of this paper is on out-of-sample prediction behavior, implications for model inference are only briefly explored.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا