Do you want to publish a course? Click here

Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks

79   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortunately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.



rate research

Read More

Domain adaptation is widely used in learning problems lacking labels. Recent studies show that deep adversarial domain adaptation models can make markable improvements in performance, which include symmetric and asymmetric architectures. However, the former has poor generalization ability whereas the latter is very hard to train. In this paper, we propose a novel adversarial domain adaptation method named Adversarial Residual Transform Networks (ARTNs) to improve the generalization ability, which directly transforms the source features into the space of target features. In this model, residual connections are used to share features and adversarial loss is reconstructed, thus making the model more generalized and easier to train. Moreover, a special regularization term is added to the loss function to alleviate a vanishing gradient problem, which enables its training process stable. A series of experiments based on Amazon review dataset, digits datasets and Office-31 image datasets are conducted to show that the proposed ARTN can be comparable with the methods of the state-of-the-art.
151 - Le Liu , Jieren Cheng , Boyi Liu 2021
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain when the data distribution of the two domains is different. As a result, it needs to reduce the data distribution difference between the two domains to improve the models generalization ability. Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature. The former ignores the relationship between the various classes in the two domains, which may cause serious negative transfer, the latter alleviates it by introducing pseudo-labels of the target domain, but it does not consider the importance of performing class-level alignment on shallow feature representations. In this paper, we develop this work on the method of class-level alignment. The proposed method reduces the difference between two domains dramaticlly by aligning multi-level features. In the case that the two domains share the label space, the class-level alignment is implemented by introducing Multi-Level Feature Contrastive Networks (MLFCNet). In practice, since the categories of samples in target domain are unavailable, we iteratively use clustering algorithm to obtain the pseudo-labels, and then minimize Multi-Level Contrastive Discrepancy (MLCD) loss to achieve more accurate class-level alignment. Experiments on three real-world benchmarks ImageCLEF-DA, Office-31 and Office-Home demonstrate that MLFCNet compares favorably against the existing state-of-the-art domain adaptation methods.
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and expensive process in the majority of applications. When there is a need to translate images across n domains, if the training is performed between every two domains, the complexity of the training will increase quadratically. Moreover, training with data from two domains only at a time cannot benefit from data of other domains, which prevents the extraction of more useful features and hinders the progress of this research area. In this work, we propose a general framework for unsupervised image-to-image translation across multiple domains, which can translate images from domain X to any a domain without requiring direct training between the two domains involved in image translation. A byproduct of the framework is the reduction of computing time and computing resources, since it needs less time than training the domains in pairs as is done in state-of-the-art works. Our proposed framework consists of a pair of encoders along with a pair of GANs which learns high-level features across different domains to generate diverse and realistic samples from. Our framework shows competing results on many image-to-image tasks compared with state-of-the-art techniques.
105 - Hui Ying , He Wang , Tianjia Shao 2021
Image generation has been heavily investigated in computer vision, where one core research challenge is to generate images from arbitrarily complex distributions with little supervision. Generative Adversarial Networks (GANs) as an implicit approach have achieved great successes in this direction and therefore been employed widely. However, GANs are known to suffer from issues such as mode collapse, non-structured latent space, being unable to compute likelihoods, etc. In this paper, we propose a new unsupervised non-parametric method named mixture of infinite conditional GANs or MIC-GANs, to tackle several GAN issues together, aiming for image generation with parsimonious prior knowledge. Through comprehensive evaluations across different datasets, we show that MIC-GANs are effective in structuring the latent space and avoiding mode collapse, and outperform state-of-the-art methods. MICGANs are adaptive, versatile, and robust. They offer a promising solution to several well-known GAN issues. Code available: github.com/yinghdb/MICGANs.
We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا